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Abstract

Security-typed languages are an evolving tool for imple-
menting systems with provable security guarantees. How-
ever, to date, these tools have only been used to build simple
“toy” programs. As described in this paper, we have devel-
oped the first real-world, security-typed application: a se-
cure email system written in the Java language variant Jif.
Real-world policies are mapped onto the information flows
controlled by the language primitives, and we consider the
process and tractability of broadly enforcing security policy
in commodity applications. We find that while the language
provided the rudimentary tools to achieve low-level secu-
rity goals, additional tools, services, and language exten-
sions were necessary to formulate and enforce application
policy. We detail the design and use of these tools. We also
show how the strong guarantees of Jif in conjunction with
our policy tools can be used to evaluate security. This work
serves as a starting point–we have demonstrated that it is
possible to implement real-world systems and policy using
security-typed languages. However, further investigation of
the developer tools and supporting policy infrastructure is
necessary before they can fulfill their considerable promise
of enabling more secure systems.

1 Introduction
The exposure of private data is an increasingly critical

concern of online organizations [7, 8]. The huge costs
of exposure can be measured both in financial and in hu-
man terms. The central cause is, of course, the systems
themselves. The security provided by existing systems is
largely due to secure design and implementation–practices
that have yet to fully mature. Furthermore, the subsequent
evaluation of these systems relies on ad hoc or inexact qual-
ity and assurance evaluations. What are needed are tools for
formulating and ensuring more precise notions of security.
Security-typed languages fulfill this need.

Security-typed languages annotate source code with se-

curity levels on types [28] such that the compiler can stati-
cally guarantee that the program will enforce noninterfer-
ence [11]. In a broader sense, these languages provide
a means of provably enforcing a security policy. The-
oretical models for security-typed languages have been
actively studied and are continuing to evolve. For ex-
ample, researchers are extending these models to include
new features, such as exceptions, polymorphism, objects,
inheritance, side-effects, threads, encryption, and many
more [21].

Developer tools and programming experience have not
evolved in concert with language features. There are cur-
rently only two significant language implementations, Flow
Caml [24] and Jif [18] and only two applications [1, 18],
both written in Jif. The literature frequently postulates on
practical, distributed applications with many principals and
complex policy models such as tax preparation [16], med-
ical databases [25] and banking systems [26]. However,
the only completed applications have both been “toy” ap-
plications with only two principals within a simplistic dis-
tributed environment. For this reason, many language fea-
tures such as dynamic principals and declassification, as
well as integration with conventional security mechanisms
such as cryptography, certificates, certificate authorities and
network authentication protocols were yet to be explored
(prior to this work).

To address this lack of practical experience, we build
a realistic application in a security-typed language. We
sought to discover whether this tool for secure program-
ming could hold up to its promise of delivering real-world
applications with strong security guarantees. Two key cri-
teria we used for defining “real-world” were that 1) the ap-
plication should interact with other non-security-typed, net-
worked components while still maintaining the security pol-
icy of its data and 2) the security policy should be easily
re-configurable such that the application could be of gen-
eral use (not just in a military, MLS setting, but also in a
corporate setting, for example). We conducted this experi-
ment by implementing an email system in the language Jif,
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Figure 1. Sending email

a security-typed variant of Java. Throughout, we reflect on
the advantages and limitations of language-based security
tools and the requirements of future development.

A principal result of this study is that we succeeded in
developing a real-world application for which we can eas-
ily assess that there is no information leakage beyond what
is allowed by a clear, user-defined, high-level policy. We
found that while language tools were robust and expressive,
additional development and runtime tools were necessary.
We extend the language with additional policy formulation
tools (a policy compiler [12]) and runtime support infras-
tructure (policy store) to enable the enforcement of policy
in a distributed environment. We also provide tools for se-
cure software engineering including a Jif integrated devel-
opment environment (IDE) in the Eclipse extensible devel-
opment platform. Finally, we provide a critical evaluation
of the Jif language, highlighting its effectiveness at carrying
out the promised security goals, the difficulties involved in
using it and the ways in which it still needs improvement.

The remainder of this paper is organized as follows. We
begin in the next section by providing a sketch of an email
system, the threats it faces and the kinds of security poli-
cies it requires. Section 3 discusses the security that can be
provided by Jif, the limitations of Jif and some solutions to
these limitations. Section 4 concisely describes the archi-
tecture of our JPmail system. Section 5 describes in detail
the tools we have built to overcome these challenges. Sec-
tion 6 provides a limited security evaluation of our email
client, discusses our experience with Jif, evaluates the dif-
ficulty and effectiveness of using Jif for building an email
client and indicates some areas of Jif which need improve-
ment. A number of related works are discussed in Section 7.
We conclude in Section 8.

2 Overview
An email system is particularly useful for the study of ap-

plication development in security-typed languages. This is
not only because email is ubiquitous, but also because it has
been a frequent avenue for security leaks [20, 7]. Moreover,
email has a wide variety of security policies that it might

need to enforce: including policies from military multi-
level security (MLS) [3] to organizational hierarchies [9].
Finally, email policy is naturally distributed, with unique
principals interacting across potentially distant clients. We
seek to support policies that involve these diverse and dy-
namic principals.

Illustrated in Figure 1, the JPmail system (JP =
Jif/Policy) consists of three main components: JPmail
clients, the Internet and public mail servers. Written in Jif,
the JPmail client (or just JPmail throughout) is a functional
email client implementing a subset of the MIME protocol.
The JPmail client software consists of three software com-
ponents: a POP3-based mail reader, an SMTP-based mail
sender and a policy store. The client provably enforces se-
curity policy from end to end (sender to recipient). Policy
is defined with respect to a principal hierarchy. Each envi-
ronment defines principal hierarchies representative of their
organizational rights structure.

2.1 Security policy

The single real-world security policy we defined at the
outset of this work was seemingly simple:

The body of an email should be visible only to the
authorized senders and receivers.

However, provably realizing this policy was more complex
than it would initially appear. We make two clarifications
about this policy. Firstly, in this paper, we are only con-
cerned with privacy (confidentiality). This is because until
June of 2006, Jif could only handle confidentiality proper-
ties (the most recent release introduces integrity labels [5]).
Future revision of our work will also embrace integrity.
Secondly, our email client is not inherently limited to send-
ing email only to authorized receivers. The way JPmail han-
dles unauthorized recipients depends on the user-defined
policy (see Section 5.1).

We make the following assumptions. The JPmail-local
file systems are trusted to store information securely, based
on the access control list on a given file (thus if a file is
readable only by the user, it is considered safe from leak-
age). Internet communication is generally untrustworthy,
and is deemed as public channels throughout. The SMTP
and POP3 servers are not written in Jif, and do not enforce
any security policy save that which is provided by their im-
plementation and administration. For the purposes of this
work, we assume nothing about the servers’ ability to pre-
vent leakage of user data: i.e., any information sent to them
is deemed public.

Consider some dangers in email. 1) In the case of a
malicious insider, email was used to leak classified docu-
ments [20]. 2) In another case, a programmer mistake led to
a privacy violation for a list of patients using anti-depressant
medication [7]. 3) An email application also handles pass-
words for logging into remote servers and could leak a pass-
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word by sending it to the server as plaintext (a protocol that
some servers use, in fact). 4) An email client which uses
PGP or other systems could accidentally or maliciously leak
keys.

Given these threats, which involve both malice and mis-
takes (on the part of both the programmer and the user), how
can one be sure that an email client is safe to use? The an-
swer to this critical question lies in two realms: the proper
configuration of an email policy and the application’s faith-
ful, verifiable implementation of that policy. How should
this verification be done? It is not unreasonable to verify
some of this by hand, but the parts that are verified by hand
should be small and straight-forward. It would be desirable
to be able to verify the remainder of these complex systems
automatically.

Jif provides the basis for this in performing automated
verification of information flows through security-annotated
type-checking. For this reason, it promises to be a powerful,
key tool for developing secure applications. At the same
time, however, Jif has practical limitations when it is being
used to build components in a distributed system. In the
next section, we explore these features and limitations.

3 Building a secure application with Jif

Jif is an object-oriented, strongly-typed language based1

on Java. In Jif, the programmer labels types with secu-
rity annotations according to the decentralized label model
(DLM) [17]. The compiler uses these annotations during
type-checking to ensure noninterference. For example, as-
suming alice and bob are principals, {alice:} is a DLM-
label in Jif syntax indicating that a particular value is owned
and readable only by alice. Thus, the following code
would produce a type error, because it attempts an illegal
flow of information from a sensitive string owned by alice
to a string owned by bob.

String{alice:} password = "1fth2;zg";

String{bob:} leak = password; // causes error

This provides the starting point for implementing a secure
email client in Jif. It suggests that if we properly label the
data we want to keep secret (the bodies of emails, passwords
and keys), then Jif will handle the rest. Jif implements a
single, strong, information-flow policy—noninterference—
parameterized by principals and delegations. One of the ad-
vantages of noninterference is that it is an end-to-end policy
(the same policy applies for the whole lifetime of data—
from its creation to its destruction). Consider the following
code for an email data structure :

1Jif does not provide support for inner classes or threads, because of the
ways they complicate information flow analysis. Jif is described most com-
pletely by Myers [15], has online documentation at www.cs.cornell.
edu/jif/ and a helpful, practical overview, along with expository exam-
ples, is given by Askarov and Sabelfeld [1].

public class Email {

String{} toAddress;

String{} fromAddress;

String{this} body;

public Email(String{} to, String{} from,

String{this} body) { ... }

}

If Alice wants to send an email to Bob, she could use the
following declaration:
Email{bob:} msgToBob = new Email(

"bob@psu.edu","alice@psu.edu","Hi Bob!");

Here, the email headers are public ({} is the Jif syntax for
a public label) and the body of the email will be labeled
{bob:} (since the {this} label in the class definition is
always replaced with whatever label is used when an in-
stance of this class is created). Suppose that a delegation
also exists from Bob to his wife Charlotte. Under a strict
noninterference policy, we could be certain, based solely
on this declaration, that no one but Bob (and Charlotte, to
whom he delegates) could ever read the body of this email.
Furthermore, Jif prevents the programmer from leaking in-
formation through email. For example, the following code
would generate an error, because password is labeled as
{alice:} while the constructor for Email requires that the
body be labeled {this} (which is {bob:} in this case):
Email{bob:} msgToBob = new Email(

"bob@psu.edu","alice@psu.edu",password); // error

Finally, observe one more important property of Jif: com-
positionality. Jif requires that a method’s information flows
be accurately indicated on the method header and then veri-
fies that the header and the information flows in the body are
consistent. After that, the body never needs to be examined
again by the type checker. These analyses are used in the
later evaluation of calling functions. Thus, we recursively
build upon smaller analyses toward a total view of system
information flow.

Detailed below, Jif presents several challenges as a tool
for system development.

3.1 A principal store

One challenge is in managing principals beyond the lim-
ited domain of a single Jif program execution. Principals
need to be defined explicitly in the program, along with the
policies they enforce (whether they allow certain declassi-
fiers, e.g.). Furthermore, for our email client to be useful
in practice, the principals persist beyond a single execution
so that labeled data may leave one Jif application (through a
network socket, for example) and later re-enter another one.
Intuitively, these principals should be anchored in principals
in the real-world, e.g., users of the parent operating system.

This is a problem that the past simple Jif demonstration
applications [1, 18] did not face, because they did not com-
municate with the non-Jif world and they used trivially sim-
ple policies. Being merely games, they only had to define
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principals “me” and “opponent” and those principals only
needed to have meaning for the duration of one execution
of the program. In our application, to the contrary, it is nec-
essary to utilize principals with persistent meaning across
multiple applications. Additionally, for these principals to
be robust, it should not be possible for the user to imperson-
ate a principal illegally.

One solution would be to map operating system princi-
pals one-to-one onto Jif principals and leverage the existing
technologies of distributed systems. It is desirable, how-
ever, that there be a one-to-many or many-to-one mapping
between our application’s principals and operating system
principals, in order that our application can be sufficiently
general. For example, in an MLS setting, it might be de-
sirable for many different users to be able to send “secret”
mail—this is a many-to-one mapping. Conversely, a single
user should be able to take on the role of “classified” and of
“top secret”–this is a one-to-many mapping. Furthermore,
defining a distinct principal-space for a Jif application frees
the application from being tied to a particular operating sys-
tem instance. This brings us to the following technical chal-
lenge:

Problem 1 Jif principals must be developed which are
persistent across multiple executions of an application and
consistent across multiple applications and operating sys-
tems. Jif principals must also be unique so that they cannot
be impersonated.

Observation 1 A public-key infrastructure (PKI) pro-
vides this uniqueness, persistence and consistency.

Solution 1 By mapping Jif principals to public/private key
pairs and leveraging existing PKI technologies for creation
of certificate authority and public key certificates, we de-
scribe a principal-space with the desired properties. Fur-
thermore, we prevent illegal impersonation of a principal
by requiring that a user have access to the principal’s pri-
vate key before taking on that role. We describe this in more
detail in Section 5.1

3.2 A policy store

Returning to the above code, let us see how Jif prevents
illegal information leaks. Consider this code fragment in
which msgToBob is sent out on a Socket:
JifSocketFactory socketFactory =

new JifSocketFactory();

Socket[{}] outchannel =

socketFactory.createSocket(mailhost,mailport);

outchannel.write(msgToBob); // causes error

In general, a Socket could be trusted to keep a certain level
of data confidential (using IPsec in a trusted operating sys-
tem, e.g.) and so the Socket class is parameterized by a
label (class parameterization is indicated with []’s). In
this case, the label must be {}, because part of our secu-
rity policy (as stated in Section 2.1) is that we don’t trust

the internet to keep our data confidential. We implement
this by requiring that our socketFactory only return pub-
lic sockets. Then Jif can catch security violations such as
the one above. A socket’s write method requires that input
parameters are no more secret than the label on the socket.
Thus, trying to send msgToBob, whose label {bob:} 6≤ {}2,
causes an error.

This brings us to the most serious, practical problem with
the code above: this email could never be sent to Bob! Be-
cause it is labeled as {bob:}, Jif prevents it from being
placed on a public channel and sent to the SMTP server.
The only way around this would be if there were a channel
directly to Bob that no one else could see, but this would
preclude using existing mail servers and existing networks.
Another obvious solution would be to use encryption. How-
ever, under the strict noninterference policy, even encryp-
tion would be disallowed, because putting a ciphertext on
a public channel is a possibilistic leak, releasing a small
amount of information about the plaintext.

We might decide that the information leaked through en-
cryption is an acceptable leak, however. Then a Jif solu-
tion is to relax the policy slightly through declassification.
For this purpose, Jif provides a primitive, the declassify-
statement:
outchannel.write(

declassify(AES.encrypt(key,msgToBob), {}));

This introduces a new problem. Although we have success-
fully published the email, we have now lost the meaning of
the policy {bob:}. Allowing any relaxations of the policy
leaves the programmer wondering what the new policy ac-
tually is. The label {bob:} no longer means that only Bob
and Charlotte can read the data. It now means that only
Bob and Charlotte can read the data, modulo some infor-
mation about the data that might be released by some de-
classification statements somewhere in the program. This
is problematic, because the declassification statements have
nothing to limit them and could actually release all the in-
formation to any security level, including public. At the
same time, it is not a total loss, because we know, at least,
that the information could only be leaked through declas-
sification statements. A security analysis of Jif only needs
to focus on the declassification statements to gauge whether
the information leakage is dangerous or unacceptable. Such
an analysis was done in the jifpoker case study [1].

The security analysis would be easier and safer, however,
if it could be localized to a small, single policy file, separate
from the application itself. Rather than treating every de-
classification as a potential wildcard, it is possible to place
some limits on the allowed kinds of declassification for a
particular principal and specify these in a small policy file.
For example, the policy file might specify that Bob’s data
can only be declassified if it is also encrypted. This restores

2The 6≤ operator indicates that bob does not delegate to public.
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local meaning to a label such as {bob:}. Consider an ex-
ample policy file, focusing only on Bob’s policy statements:

bob -> charlotte % Bob trusts his wife with all data

bob allows smtp.DeclassMsgBody(family)

bob allows crypto.AES(public)

bob allows crypto.MD5(public)

% Bob’s children

family -> john

family -> sarah

With this policy file, when the programmer sees that the
email is labeled {bob:}, she knows that this email is lim-
ited in the ways it can flow: it can be sent on public chan-
nels, but only if it is encrypted or hashed first. Bob can
send information via Email, but only to his family. This
eliminates the need to scour the code for all declassifiers
that could leak Bob’s data. The policy file states explicitly
which declassifiers are allowed.

Problem 2 Connecting with non-security-typed compo-
nents requires declassification, but it introduces confusion
about the security policy of a program and potentially
broadens information leakage.

Observation 2 Based on this, we make the observation
that in order to understand the meaning of security-policy
labels in a security-typed program with declassification, it is
necessary to know three things: 1) the principals used in the
program, 2) the delegations they make and 3) the declassi-
fiers they trust. With this information in hand, the meaning
of the policy {bob:} is restored. If we know, for example,
that Bob delegates to no one and trusts only AES encryp-
tion, then we know that the only information which will be
released about the body of this email will be the extremely
small amount of information released by AES encryption.

Solution 2 To address this challenge, we added a policy
infrastructure to Jif that allows the programmer to define,
up front, the principals, delegations and declassifiers which
may be used in a program. We describe this infrastructure
in Section 5.1; we give even more detail about this policy
infrastructure in a technical report [12], including a proof
of the security it maintains.

3.3 Certified user input

Consider again the code for an email data structure,
given above. If Alice wishes to send an email to Bob, she
must first type in the email from her terminal. Thus, the
email text enters the JPmail client from an input stream,
stdin, labeled {alice:}. If she then wishes to send this
string to Bob, it must be relabeled to {bob:}. Let us also
introduce a new concept, a dynamic principal, which allows
the sending of an email to be parameterized based on two
dynamic values: the user who is sending and the chosen
recipient.

Email{rcpt:} send(String{} to, String{} from,

Principal user, Principal rcpt) {

String{user:} body = stdin.readLine();

Email{rcpt:} msg =

new Email(to,from, declassify(body,{rcpt:});

return msg; }

Thus, if alice and bob are principals defined elsewhere,
the email could be created and sent as follows:
Email{bob:} msgToBob = Email.send(

"bob@psu.edu","alice@psu.edu",alice,bob);

outchannel.write(

declassify(AES.encrypt(key,msgToBob), {}));

Here again, we need declassifying filters. In this case, we
need to leak more information than in the encryption de-
classifier described above—we need to leak the body of the
text. Should such leakage be possible? This is a policy de-
cision that should not be buried in the code, but should
be declared at a high level.

The answer depends on the security model. In an MLS
setting, this should not be possible unless Alice and Bob
are both working at the appropriate relative security levels.
In other words, this declassification should not be allowed
at all and the method Email.send(...) should return
null unless user delegates to rcpt, written rcpt acts-
for user in Jif (e.g. in an MLS setting, user could be
secret and rcpt could be secret or top-secret). In a
corporate setting, it may be acceptable to declassify email
text so that anyone in the company can read it. If it is going
to an external principal, it may be necessary to perform an
audit or add a disclaimer. We accommodate such security
policies in the following way3:
Email{rcpt:} send(String{} to, String{} from,

Principal user, Principal rcpt) {

String{user:} bodyIn = stdin.readLine();

String{rcpt:} body = null;

if (rcpt actsfor user) body = bodyIn;

else if (authorize(user,rcpt,DeclassMsgBody))

body = DeclassMsgBody(user,rcpt,bodyIn);

else if (authorize(user,rcpt,DeclMsgBodyAudit))

body = DeclMsgBodyAudit(user,rcpt,bodyIn);

Email{rcpt:} msg = new Email(to,from,body);

return msg; }

The authorize method checks whether the principal in the
first argument trusts the declassifier (third argument) to de-
classify information to the principal in the second argument.
Thus, an MLS policy should not allow either declassifier to
be used, while a company policy may allow DeclassMsg-
Body if both principals are in the company and DeclMsg-
BodyAudit if the first principal is in the company, but the
recipient is external. These details are specified in a policy
file, which is compiled into Jif with our policy compiler and

3Note that this code does not correspond directly to the Jif implemen-
tation. We use Jif Closures for this which are such flexible constructions
that they become syntactically cumbersome. We present a syntactically
simplified but semantically equivalent form here to aid the reader.
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established at the start of a Jif application. By teasing out
the policy, we have made it possible to change the policy
model of an application merely by changing the high-level
policy file.

In the above code, we glossed over some details about
reading data from the standard input. Who decides how in-
put from the terminal should be labeled? Intuitively, all data
read from the terminal should be labeled with the principal
corresponding to the user who originally executed the appli-
cation. In other words, the data that the user enters should
be protected according to her security policy.

Jif implements this by first adding a special native princi-
pal as an input parameter to main (the method called when
the application is executed). It then requires that standard
input be labeled at least as confidential as this principal:

static void main(principal user, String[] args) {

jif.runtime.Runtime[user] runtime = null;

try {

runtime = jif.runtime.Runtime[user].getRuntime();

} catch (SecurityException e) {}

InputStreamReader[{user:}] inS = null;

try {

inS = new InputStreamReader[{user:}](

runtime.stdin(new label{user:}));

} catch (SecurityException ex) {

} catch (NullPointerException e) {}

...

}

Problem 3 Jif only provides a single native principal cor-
responding to the user executing the program. Furthermore,
access to operating system resources belonging to the user,
such as standard I/O and local files are provided, by Jif, but
must be labeled with this native principal. The JPMail pol-
icy uses an entirely distinct set of principals (e.g. Alice may
send email to someone who has no user account on her sys-
tem), but Jif does not allow for any way to equate native
principals to user-defined principals.

Observation 3 In order to give the native, user principal
an identity in our email system, we need to identify it with
one of the principals in the principal store.

Solution 3 This required modifications to the Jif runtime
system to allow native principals to establish delegations.
At the same time, we had to add some form of authentica-
tion to ensure that a malicious principal could not simply
log in as bob and read Bob’s emails. Thus, we require the
user to provide, as authentication, Bob’s certified private
key (see Section 5.1). Note, that a more general form of
compliance between an entire operating system information
flow policy and an application-level policy is an interesting
problem, left to future work [13].

4 JPmail architecture
We now give a description of the process of sending and

receiving an email in JPmail. In this description, we focus

on the information flows that are necessary for sending an
email from one principal to another. In both the sending and
receiving processes, the data must pass through software fil-
ters (points of processing that may audit or modify data) that
serve to relabel and/or modify it. In sending email, there
are two filters involved; in retrieving it, there is only one
(strictly speaking, this one may not be necessary because
the information is being upgraded). The only requirements
on these filters is that they are authorized by the owner of
the data and that they produce the properly labeled output.

The following example refers to the numbered Figure 2 in
which a principal Alice uses JPmail to securely send an
email to another principal Bob, who in turn reads that mail.

Sending email Alice initializes a MailSenderwith a pol-
icy and her principal name (alice in this case—the policy
and principals are explained in more detail in Section 5.1) as
well the necessary parameters for the outgoing mail server
(address, user name, etc.). 1) Then Alice enters an email, in-
cluding the header information and the text for the body of
the email. This email is labeled as alice since it came from
an input stream owned by Alice. 2) The email must then
undergo two transformations. First, in order to send out an
email, the headers must be readable by the mail server. This
requires that they be declassified to public. Secondly, the
body must be readable by the recipient, Bob, without being
readable by the public. These two steps are performed by a
reclassifier, as shown. At this point, the email headers are
visible to the server while the body is visible only to the re-
cipient. 3) The next step is to make the entire email visible
to the server so that it can be sent out. At the same time, we
must not compromise the policy on the body, which requires
that it should only be visible to bob. To do this, we use a
random one-time symmetric key approach. The one-time
key (k) is generated, used to encrypt the email body (b),
and encrypted with bob’s public key (k+

bob). Then the orig-
inal body is replaced with the encrypted body along with
the encrypted, one-time key, i.e. the message body contains
E(k, b), E(k+

bob, k). The encrypted values can be declassi-
fied to be visible by the server without compromising bob’s
privacy. 4) Finally, the email is sent to the SMTP server,
which in turn delivers it to the POP3 server.

Reading email Bob retrieves his email from a POP3
server using the MailReader class. 5) After connecting
to the server, the mail reader takes in each email and ex-
amines the label field in the header (Label in the figure).
The header information can remain public, but the text of
the body must be decrypted and reclassified according to
the label field. 6) To do this, we require Bob’s private key.
Since Bob has access to his own private key, it can be read
in from the file system, labeled as bob. If another user were
trying to impersonate Bob, the private key would not be
available and the attempted decryption would fail. 7) Since
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Figure 2. Sending and retrieving a message using the JPmail client.

Bob’s private key is labeled as bob, decrypting the body of
the email automatically raises the plaintext’s security level
to bob. Now that the body is safely in the confines of the
Jif sandbox, it can be decrypted without fear that it will be
leaked. 8) Finally, since the user who is running the mail
reader is bob, this email can be printed to bob’s terminal.

5 Tools
Our experience in JPmail has highlighted the need for

additional policy and application development tools. Al-
though we have focused our attention on Jif, these tools
would be necessary in any security-typed language. The
following describes the tools we developed to address areas
we found most challenging and/or time-consuming: high-
level, policy development in a distributed system and soft-
ware engineering.

5.1 Policy tools

Jif lacks a policy management infrastructure. We devel-
oped such an infrastructure consisting of two components:
a runtime policy store that provides dynamic access to prin-
cipals, and a policy compiler that automatically generates
principals and initializes the policy store. We describe the
policy language and compiler more fully and more formally
in a recent, prior work [12], including a proof of correctness
and the security property they maintain. In this work, we
have made this policy infrastructure more robust and useful
in a distributed system through binding principals to pub-
lic/private key pairs. We briefly consider these tools below
and describe the new extension for cryptographic principals
and give some example usage in the context of JPmail.

principal p ::= alice | bob | ...
declassifier D ::= method1 | method2 | ...
delegation Del ::= p -> p
trust stmt Allow ::= p allows D(p) | p allows None

policy stmts Stmt ::= (Del | Allow)∗

Figure 3. Policy language syntax.

Policy language and compiler Jif lacks high-level pol-
icy specification tools. We desire to automatically gener-
ate Jif policy infrastructure (code) from high level specifi-
cations. To this end, we developed a policy language and
an accompanying compiler. Currently, the policy language
consists of only two types of policy statements: delegations
and declassifier-allowances (implicitly, there is also the dec-
laration of the principals themselves). The syntax is given
formally in Figure 3. Recalling Observation 2 from Sec-
tion 3.2, we hold that this simple policy is complete for
capturing the global meaning of local policy labels.

Illustrated in Figure 4, policy is integrated into a Jif pro-
gram by using the policy compiler. The compiler interprets
the policy specification, given in a separate file, and gen-
erates the associated Jif code. The created code provides
functions for the creation of principals (as identified in the
specification) and for their insertion in the policy store. The
policy specification also includes explicit authorizations of
all the declassifiers that the principals trust. Functions for
the policy initialization and principal delegations described
in the policy file are also created. Finally, this automatically
generated code is introduced into the Jif application with a
single line of Jif code.

Jif provides a Principal interface which allows for policy
to be implemented directly in dynamic principal objects. In

7



alice -> bob
alice allows AES

...
policy 

compiler

Jif compiler

AESClosure

...
class MailSender
...

AlicePrincipal

...

class Policy

policy

Policy.setupPolicy();

void main() {
...

}

Jif code
(auto-generated)

Jif code

MailSender

...

policy and 
application
class files

Figure 4. The policy compiler automatically
generates Jif policy objects from user speci-
fications.

particular, Jif Principals maintain a list of principals they
delegate to and they also allow the programmer to imple-
ment a method which is called to authorize a declassifica-
tion. The Principal interface can also be implemented with
additional member data, allowing us to push public keys
(and if available, private keys) directly into dynamic prin-
cipals. Our policy compiler automatically generates a Prin-
cipal implementation for each principal given in the pol-
icy file. It automatically generates the authorization method
based on the allow-statements for the permissible declas-
sifications associated with the principal. It also generates
the JifPolicy class which instantiates and initializes each
principal, establishes its delegations (according to the pol-
icy file) and loads its public and, if available, private key. Fi-
nally, it creates a policy store in which it stores all the newly
created principals (they can be looked up by name and used
in policy labels) and it returns this policy store to the calling
application. To use a policy, an application must merely re-
trieve a policy store by calling JifPolicy.setupPolicy.

As an example, a security research lab could design a
policy in which all of the members are listed in the policy
and their public keys are certified by a lab’s certificate au-
thority. Emails can be sent freely throughout the lab. Emails
destined for recipients outside the lab are handled by a sep-
arate filter that imposes the lab’s policy on external mail
(whether it be adding a disclaimer, limiting the number of
outgoing messages, auditing outgoing messages, etc.). In
Figure 5, we illustrate this lab policy. Principals begin with
lower-case letters and declassifiers with uppercase (public
is repeated only for clarity of reading.) The solid arrows in-
dicate delegations, the “T” arrows indicate allowances and
the dashed arrows indicate the lowest level a filter may de-
classify to. Note that this lab policy was used for the devel-
opment testing of JPmail.

Alice Bob

alicebob

AES.encrypt RSAself.encrypt

public

SIIS lab

public

external

DeclassHdr

DeclassBody

publicexternal

FilterBody Audit

Delegations

Allowances

Figure 5. Delegation hierarchy and declassifi-
cation allowances for a sample, research lab
security policy.

Cryptographic principals Cryptography provides two
central functions within JPmail4: it is critical for ensuring
data is not leaked as it passes outside of a Jif application
and it plays an essential role in maintaining the consistency
and integrity of principals from one Jif application to an-
other. This former function is achieved via encryption of
email bodies. In the latter function, principals are uniquely
identified via an association with a public key (certificate).
We leveraged existing facilities for creating and verifying
X.509 certificates for this purpose. For certificate signing
and verification, we created a JPmail-specific certificate au-
thority (CA).

Our use of certificates required us to bind public keys
to Jif’s principals. In Jif, principals are created by im-
plementing a Principal interface. We created our own
KeyPrincipal by implementing the standard Principal
interface (which requires a name, closure authorization test-
ing, equivalence testing and delegation testing) and also
adding fields for a public and, if it’s available to the current
user, a private key. Before allowing a public key to be asso-
ciated with a principal, the certificate containing the public
key is validated using the public key of the trusted CA. For
sending email to users outside the system, the external
principal can be used which can be declassified with the
FilterBody declassifier (this could be used to audit emails
or add a disclaimer, e.g.). In order to add a new principal to
the system, the principal’s public key certificate must be dis-
tributed and a delegation should be added by each principal
to their policy to include the new user. Because the policy
is decentralized, it could be stored on a common server and
each user could update his own policy, while possibly also

4JPmail uses the following algorithms: DES, TripleDES, AES were
used in CBC mode for all symmetric key operations, and RSA Electronic
Codebook (ECB) mode with PKCS1 padding for asymmetric key opera-
tions. We also used MD5 hashes on passwords for authentication with the
email servers according to the POP3 and SMTP protocols.
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maintaining some mandatory requirements. These are areas
of future investigation.

In order to integrate the delegations and authorizations
defined in our policy with the local file system, we had to
augment the Jif compiler’s runtime environment. By intro-
ducing a method to delegate from a NativePrincipal to
a non-native principal, we make an association between the
user running the program and one of our internal principals.
In order to authorize this association, we require that the
user can only delegate to a principal for whom the user can
provide the private key. In other words, JPmail authenti-
cates the claimed principal by checking that it has a signed
certificate from the CA with the principal’s identity and the
associated private key before it allows the user to assume
that identity. It does this by loading the private key from the
user’s key store, for which it requires the user’s password
and checking it against the JPMail-specific CA.

5.2 Practical tools for software engineering

An integrated development environment (IDE) To par-
tially address the limitations of the current development en-
vironment, we developed an IDE for Jif. This tool integrates
the Jif compiler with the open-source Eclipse5 integrated
development platform. Eclipse has been used to build IDEs
for a wide variety of languages such as C and Java. This
IDE, even in its most basic form, represented 80-100 man-
hours of work. For brevity, we discuss only the impact of
the IDE.

The main benefit of the Jif IDE (so far) is that it con-
siderably reduces the edit/compile/repair development cy-
cle. As Eclipse runs the Jif compiler in the background, it
quickly tags syntax errors, missing exceptions, missing im-
port statements and even security label violations. Thus, er-
rors, especially vexing book-keeping errors, can be quickly
fixed without having to switch to a terminal window and re-
compile the source. Furthermore, the integrated support for
syntax-highlighting and easy integration with version con-
trol tools such as CVS and subversion were welcome ad-
ditions to the Jif programming environment. Future devel-
opment in the Jifclipse feature will include more complex
refactoring algorithms, greater contextual awareness of la-
bels, integration with our policy tools, and a host of runtime
and development utilities.

Declassifiers Declassifiers play a key role in providing se-
curity guarantees. Because all realistic security-typed ap-
plications need to have some way of declassifying infor-
mation (since even functions like encryption and password
checks leak small amounts of information), it is valuable to
build up a collection of commonly used declassifiers. For
example, encryption and auditing functions can declassify
data–they expose some amount of data, but (under certain
circumstances) it is not enough to be deemed a leak. Such

5http://www.eclipse.org/

functions are similar to seal classes [1, 22], which provide a
declassifying filter that limits when information is released.
Libraries of common declassifiers can be carefully engi-
neered and formally verified to prevent unacceptable or dan-
gerous leakage (as opposed to the vanishingly small leak
from encryption or the acceptable leak from an audit or
password check). Applications can benefit from this vet-
ting, and avoid declassifying through potentially dangerous
or untested interfaces [23].

We have built a library of declassifiers for use in Jif ap-
plications. The declassifiers we constructed for encryption
have widespread value and could be re-used without modi-
fication in other applications. Some of the declassifiers we
created are special-purpose, because they are made to han-
dle only email objects. Even these, however, are useful as
blueprints for other application developers. Because of its
extensive use of declassification, JPmail required the explo-
ration of new features available in Jif 2.0: Closures and
the Principal interface. Our code serves as the first ex-
plorations into the utility and flexibility of these features6.

6 Evaluation
Based on our experience of implementing an email

client, we now evaluate the use of Jif to build the JPmail
application and suggest improvements to aid future devel-
opers. Some preliminary timing measurements indicate that
the overhead of Jif, especially for an I/O-bound application
like email, is not significant [13]. The greatest slow-down
is caused by the encryption, which could possibly be im-
proved by entrusting the encryption to the operating system,
using, for example, IPsec. In this section, however, we are
primarily concerned with evaluating the security and usabil-
ity of Jif.

Jif provides a strong basis for assessing the correctness
of an security policy implementation. Recall our secu-
rity policy given in Section 2.1: “The body of an email
should be visible only to the authorized senders and re-
ceivers.” We can be sure that this policy has been cor-
rectly implemented by examining the label on emails and
cross-checking with the policy file about what information
flows are possible with that label. In particular, by examin-
ing the smtp.MailSenderCrypto class and the readMes-
sage method, we find that an email is read in from an in-
put stream which has the user’s label (the user who ran the
mail client) and consequently is also labeled with the user’s
label. Furthermore, the user provides the name of the prin-
cipal rcpt to whom he wishes to send the email. That prin-
cipal is looked up in the principal store and associated with
a Jif principal (which was created from the policy file). The
body of the email is then passed through a declassifier, De-
classMsgBody which will relabel the body to {rcpt:} if

6Our code is made available at http://siis.cse.psu.edu/

jpmail.html.
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rcpt is one of the allowed recipient principals, given in the
policy file. From this point, the rcpt policy governs all in-
formation flows. Namely, before this email can be placed on
the public socket, it must pass through another declassifier
based on rcpt’s policy. If rcpt allows for AES encryption,
then the email is encrypted as described in Section 4, using a
one-time randomly generated key (which cannot be leaked,
because it is labeled rcpt) and the principal’s public key.

We can repeat this evaluation for other sensitive data
such as keys and passwords. For these items the analysis
is even simpler, because they are not dynamically labeled
like emails (which depend on user input). The password is
given a label when a MailSenderCrypto object is created.
Checking the policy file, we can see that Strings cannot be
declassified except through an MD5 filter. Creating an MD5
hash is necessary for authentication with the mail server.
This was made clear when we tried to send the password
as plaintext over the mail server socket when establishing
a connection. This insecure practice was automatically dis-
allowed by Jif. At this point, we face a limitation in Jif’s
security analysis. Namely, the SMTP and POP3 protocols’
password authentication ensures that a nonce is used to pre-
vent replay attacks. This is not encoded in the Jif labels in
any way. Merely knowing the declassifier that is used is
not enough to ensure that replay attacks are avoided—only
that the plaintext has not been leaked. We have to trust in
the protocols for protection against more subtle attacks (a
non-trivial assumption).

There are other caveats to security that must not be over-
looked. Firstly, the security properties of a program are de-
pendent on the correctness of the Jif compiler (and our pol-
icy compiler). Secondly, the security properties may also be
dependent on supporting infrastructures. This includes the
correctness of encryption libraries and the strength of used
cryptographic algorithms, the protection on keystores and
correctness of public-key cryptographic libraries as well as
the security enforced by the local file system. Moreover, for
the system to be secure, the enforced policy must be consis-
tent across all clients. We defer integrity to future work.

One advantage of Jif is that it forces the programmer to
think in terms of information flows and to consider secu-
rity concerns from the outset. Interestingly, there is a strong
consensus in the software engineering community that per-
forming these kinds of security analysis at design time is
essential to the security of the resulting system [6].

Finally, we observed that the policy tool effectively de-
coupled policy from the programs that they govern. This al-
lowed us to modify policy easily in order to accommodate
different security models. By instrumenting the code dur-
ing development with different options for each filter, we
could implement distinct security models without altering
the code. Furthermore, by gathering the policy into a single
file, it was easier to do a security analysis and gauge what

information flows could take place for a given principal, in
contrast to leaving declassify statements in the code.

The difficulty of programming in Jif The shortcomings
of Jif are frequently not specific to Jif, so much as they
are issues that any security-typed compiler must face. Jif
is the most advanced security-typed compiler available and
the Jif team should be commended for their substantial ef-
forts, but it is not yet ready for industrial development. Im-
plementing the JPmail client took hundreds of man-hours
(not including the time necessary to learn Jif) to generate
around 6,000 lines of code. Furthermore, despite the sub-
stantial amount of work involved, our mail client is neither
flashy nor full-featured. It uses text-based I/O and handles a
minimal subset of the MIME standard just enough to allow
communication between various principals. This should be
contrasted with the more modest efforts needed to retrofit
composable security properties onto the full-featured, GUI-
based email client, Pooka, by using the Polymer security
policy system [2].

6.1 Needs for improvement

Debugging A serious issue we faced was in the difficulty
of debugging Jif applications. No advanced debugging tools
exist for Jif, leaving us only with rudimentary print state-
ments. Furthermore, because Jif is designed to hide infor-
mation, we, in turn, had to overcome its propensity for hid-
ing information in order to reveal it for debugging.

Implicit flows Another source of repeated consternation
in Jif programs involves implicit flows. Jif tracks not only
explicit flows of information as data passes from one vari-
able to another, but also implicit flows, in which data is
leaked through the control path. For example, making a
low confidentiality assignment in the body of a conditional
with a highly confidential guard releases a small amount
of information about the guard through the assignment. To
prevent this, Jif raises the security level of everything in the
body of the conditional to the level of the guard (by assign-
ing this security level to a pc-label and label-joining the pc
with every information source in the body) for the length of
the body. This applies also in the presence of loops and ex-
ceptions. With nested conditionals, loops and exceptions, it
can become quite difficult to determine by inspection what
the security level of the pc is at a given point in the code.
Furthermore, even in knowing the pc-label, it can be chal-
lenging to determine how it got that way.

Reader lists One unexplored area of Jif that holds great
promise in expressing flexible policy is the use of Jif reader
lists. The decentralized label model (DLM) provides for la-
bels such as {alice:bob}, meaning that Bob cannot copy
the value, but only view it on a channel that both Alice and
Bob trust. Using this policy, an email could be sent to Bob
which he could not save on his hard drive or forward to an-
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other user, but could only view on a terminal certified by
both him and Alice. This would be a very useful policy, al-
lowing Alice to retain control over her data, even on another
user’s machine.

Distributed policy One of the great boasts of security-
typed languages is that noninterfering components are com-
posable. Thus, secure programs can be built in a modular
way, a block at a time, and when composed can still make
end-to-end security guarantees. The problem is that in order
to have security-typed distributed applications, all neces-
sary support structures, including sockets, network stacks,
file systems, operating systems, etc. would need to be built
in security-typed languages. Since this dream will not be
fulfilled in the near future, Jif at least allows incremental
deployment of applications with interfaces to existing sup-
port services. Thus, in the mean time, conventional security
enforcement mechanisms such as certificates, encryption,
key stores, SSL, etc. must be used. One shortcoming of
Jif is that it does not provide a secure integration of these
conventional security enforcement mechanisms.

Incremental development Future applications will re-
quire many more support libraries be integrated with Jif.
Currently, Jif has a small library of security-typed versions
of Java’s Container classes. Most other support must still
be developed however. In our case study, we have pro-
vided a subset of the javax.mail library. Hopefully other
projects will continue to fill the gaps, and thus make Jif
more accessible to application developers.

7 Related Work
The concept of information-flow control is well es-

tablished. After the first formulation by Bell and La
Padula [3] and the subsequent definition of noninterfer-
ence [11], Smith, Volpano, and Irvine first recast the ques-
tion of information flow into a static type judgment for a
simple imperative language [28].

The notion of information flow has been extended to lan-
guages with many other features, such as programs with
multiple threads of execution [27, 14], functional languages
and their extensions [19, 29] and distributed systems [14].
For a comprehensive survey of the field, see the survey by
Sabelfeld and Myers [21].

Two robust security-typed languages have been imple-
mented that statically enforce noninterference. Flow Caml
[24] implements a security-typed version of the Caml lan-
guage that satisfies noninterference. JFlow [16] and its suc-
cessor Jif [18] introduce such features as a decentralized
label model and run-time principals in an extension to the
Java language. Jif is actively in development, with the latest
release in June 2006 (v. 3.0) introducing integrity labels [5].

A central theme in this paper is declassification.
Sabelfeld and Sands provide a survey of this field [22]. We
add our own, modest work to this collection [12], introduc-

ing the notions of trusted declassification and noninterfer-
ence modulo trusted methods. What sets our work apart is
a demonstration of the practical utility of these tools.

Some of our work uses concepts (PKIs, email encryp-
tion, etc.) explored more extensively in such systems as
OpenPGP. Our purpose in developing the JPmail client,
however, was not to replace the state-of-the-art secure mail
clients (for a survey, see [10]), nor to replace extensive se-
cure email infrastructures such as OpenPGP [4], but rather
to investigate the interaction of security-typed programming
with real-world security tools, such as certificates, symmet-
ric and asymmetric encryption, etc.

The most closely related work is the paper by Askarov
and Sabelfeld, detailing a mental poker protocol application
in Jif. Our work is a natural successor to theirs, exploring
areas of policy and distributed policy that were not devel-
oped in their work. Our application is also slightly larger
than theirs (about 15%) and an order of magnitude larger
than the other security-typed applications [18, 26].

8 Conclusions
This paper has described the first real-world application

built in a type-secure language: the JPmail email client. In
so doing, we have exposed the advantages and limitations
of the state of the art. On the positive side, Jif provides
extensive and usable interfaces for developing information
flow-governed applications. These features provide a basis
from which concrete security guarantees can be built.

Our work in JPmail also uncovered two central deficien-
cies. First, at present, working with Jif is exceedingly diffi-
cult. This is because of a dearth of developer tools and the
difficulty in determining the source and meaning of errors.
We introduce an IDE and policy design patterns to help ad-
dress these developer tool limitations. Second, there is little
or no infrastructure to formulate policy, communicate that
policy beyond a single application, or map the guarantees
onto surrounding security infrastructure. Here, our policy
compiler and policy store address each of these areas.

Even in the face of the considerable challenges we en-
countered in this project, we are heartened by the experi-
ence. To be sure, the tools and practice of using Jif, and in a
larger sense security-typed languages, must mature before
their promise is met. We see this work as another step in
that maturation.
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