
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware

Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, Wenke Lee
{paul.royal, mphalpin, dagon, edmonds, wenke}@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Abstract

Modern malware often hide the malicious portion of
their program code by making it appear as data at compile-
time and transforming it back into executable code at run-
time. This obfuscation technique poses obstacles to re-
searchers who want to understand the malicious behavior of
new or unknown malware and to practitioners who want to
create models of detection and methods of recovery. In this
paper we propose a technique for automating the process of
extracting the hidden-code bodies of this class of malware.
Our approach is based on the observation that sequences
of packed or hidden code in a malware instance can be
made self-identifying when its runtime execution is checked
against its static code model. In deriving our technique,
we formally define the unpack-executing behavior that such
malware exhibits and devise an algorithm for identifying
and extracting its hidden-code. We also provide details of
the implementation and evaluation of our extraction tech-
nique; the results from our experiments on several thousand
malware binaries show our approach can be used to signif-
icantly reduce the time required to analyze such malware,
and to improve the performance of malware detection tools.

1. Introduction

A popular obfuscation mechanism used by modern
malware (viruses, trojans, worms, etc.) is the runtime gen-
eration and execution of program code. When run, in-
stances of this type of malware transform or unpack and
then execute a block of program code that was obfuscated
at compile-time. The transformation generating the code
may be trivially simple (e.g., XORing a block of data into
code) or reasonably complex (e.g., using the International
Data Encryption Algorithm to decrypt a block of code [16]).
Regardless of the degree of complexity, the consequence of
successfully applying these techniques is that a static anal-

ysis of the program will view the obfuscated block as non-
instruction data or omit its analysis entirely, thereby hid-
ing the program’s true intentions. As a concrete example,
encrypted viruses are a class of unpack-executing malware
that keep their method of runtime decryption constant be-
tween generations.

The ability of information security practitioners to im-
plement models of detection and methods of recovery
against malware are often stymied by instances of unpack-
executing malware, such as encrypted and polymorphic
viruses. Time must be invested to learn the mechanism by
which a given instance of malware unpacks its compile-time
obfuscated code (usually the malicious component) so that
it can be extracted and studied. Some Computer Emergency
Response Teams (CERTs) report that as many as 160 new
viruses arrive each day [7], out of many hundreds of sam-
ple submissions. Given this volume, the process of unpack-
ing alone (before any analysis is performed) can be over-
whelming. Further, resources can be wasted in determining
whether a new malware sample contains unpack-execute
behavior, or when two or more new samples found turn out
to be the same malware with well-differentiated unpacking
mechanisms.

In this paper we present a behavior-based approach that
uses a combination of static and dynamic analysis to auto-
mate the process of extracting the hidden-code of unpack-
executing malware. We diverge from purely static tech-
niques by focusing on the results (i.e., runtime-generated
code execution) of unpack-execution rather than the un-
packing mechanism used. This perspective yields a de-
tection algorithm that bypasses the shortcomings of other
approaches (e.g., [9, 3]) that require either prior knowl-
edge of the exact unpacking technique or explicit program-
ming of the semantic behavior capturing all instances in an
unpacking class (e.g., decryption loop/jmp-based unpack-
execution).

Our approach to automatically extracting hidden-code is
based on the observation that sequences of unpacked code
in a malware instance can be made self-identifying when the

instance is executed in an environment with knowledge of
the instance’s static code model. Making self-identification
possible can be viewed as enabling a dynamic analysis of
the malware instance with the ability to query for whether
the current instruction sequence being executed exists in the
static code model. The absence of that sequence in the static
code model will identify it as unpacked code; an overview
of the entire process is shown in Figure 1.

Hidden
Code

1 2

Hidden Code Extraction

Static
Code View

Static
Analysis

Dynamic
Analysis

generates queries

Malware

Figure 1: Detecting unpacked code using both static and
dynamic analysis.

Starting with a malware instance, we begin by perform-
ing static analysis over it to acquire a model of what its ex-
ecution would look like if it did not generate and execute
code at runtime; this is depicted in Step 1. The statically
derived model and the malware instance are then fed into
the dynamic analysis component where the malware is ex-
ecuted in a sterile, isolated environment. The malware’s
execution is paused after each instruction and its execution
context is compared with the static code model, as shown in
Step 2. When the first instruction of a sequence not found in
the static model is detected, representations of that unknown
instruction sequence are written out and the malware’s exe-
cution is halted.

Our approach does not determine whether a program is
an instance of malware, but rather supplements modern mal-
ware research efforts and detection techniques, which can
use a program’s unpacked code to perform a more complete
or expedited analysis. The implementation of our tech-
nique, a tool we call PolyUnpack, can output a plain-text
disassembly of the unpacked code, a binary dump of the
code, or a complete executable version which can be loaded
into popular analysis tools such as IDA Pro [4].

The work we describe reflects the following contribu-
tions:

• A formal description of unpack-executing programs
and an algorithm for behavior-based hidden-code ex-
traction.

• Motivated by our formal description, implemen-
tation of an extraction tool that can be used
to supplement malware analysis and detection
techniques. An interactive stand-alone version

of our technique is available for download at
http://polyunpack.cc.gt.atl.ga.us/polyunpack.zip.

• Implementation and use of a framework for testing our
technique against large sets of malware. Benefits ob-
served by evaluating the results from testing include
the following:

Use of our tool can meaningfully assist a malware
researcher faced with unpack-executing malware by
removing the need to perform extraction manually.
PolyUnpack automates the process of extraction with-
out requiring knowledge of how the malware unpacks
its hidden-code. In testing, PolyUnpack was shown
to extract the hidden-code from many hundreds of ac-
tual malware samples that exhibited a wide variety of
unpack-execute behavior.

Automated unpacking can be used to enhance the ac-
curacy of malware detectors as illustrated with our
experiments using ClamAV [10] and McAfee An-
tivirus [13]. When presented with the hidden-code
from samples processed with PolyUnpack, both de-
tectors were able to identify samples previously clas-
sified as benign. The results (shown in Section 6)
demonstrate a good reduction in false negatives using
PolyUnpack.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 presents a formal
overview of unpack-executing programs and the extraction
algorithm. Section 4 provides details for implementing the
algorithm. Section 5 details the experimental framework
constructed to test large sets of malware for unpack-execute
behavior, while Section 6 presents the results of our testing.
Section 7 briefly provides some concluding remarks.

2. Related Work

In [3], Christodorescu et. al. further the detec-
tion of malware to include models based on semantic be-
havior. Called templates, these models leverage the power
of context-free grammars (CFGs) to automatically identify
classes (rather than instances) of malware. In such a frame-
work, a template could be created for detecting malware in-
stances that contain unpack-execute behavior based on the
semantic class of their unpacking mechanism; indeed, one
of the templates presented serves to capture the decryption
loop of a polymorphic worm. In the context of our fo-
cus, if a malware instance is matched to a template describ-
ing a particular unpacking mechanism, the code segment
matched could be used to unpack and extract the instance’s
hidden-code. Unfortunately, however, even the power of
CFGs do not provide a comprehensive mechanism for ex-
tracting the hidden-code of all unpack-executing malware.
All the malware writer needs to do to successfully evade

detection is find a different semantic mechanism of unpack-
ing for which a template has not yet been written, such as
pulling malicious code from a network.

Among pattern-matching based extraction approaches,
the program Portable Executable (PE) Identifier (PEiD) [9]
stands out as a widely used tool for detecting binaries that
exhibit unpack-execute behavior. PEiD uses a signature
database to determine if a binary contains packed-code.
If a signature match is found, knowledge of the identified
packing mechanism can be used to unpack and extract the
hidden-code contained in the binary. The key limitations of
PEiD are identical to that of a pattern-matching anti-virus
tool: its signature database must be updated for it to detect
new unpack-executing binary instances and can fail to de-
tect even minor variations of an otherwise known packing
method in the same semantic class.

The closest industry work to ours is the Universal PE Un-
packer plugin [17], available for IDA Pro 4.9. The plugin
uses the behavioral heuristic that a program will return to
its original entry point once it starts unpacking. Although
a good approach for handling compression-based packing
techniques, there exists a straightforward possibility of eva-
sion. That is, any program that begins execution in its en-
try point area, transforms a small portion of data in one of
its data sections, then directs execution to the data section
it transformed would evade the plugin’s detection heuris-
tic. Using the results of testing our approach as described
in Section 6, we discovered several hundred malware in-
stances sampled in the wild that evade the IDA Pro plugin’s
heuristic. Our approach does not make the same assump-
tion, and represents a more general solution to the prob-
lem of unpacking. As an additional confirmation, we cor-
responded with Ilfak Guilfanov, the author of IDA Pro; he
agrees that our technique provides a new approach not ad-
dressed by the Universal PE Unpacker plugin [6].

Finally, anti-virus companies have made reference to the
notion of malware-instance-independent code extraction,
occasionally referring to its implementation as a generic de-
cryption engine [12]. Just like the authors in [2], we found
it impossible to obtain further details about the workings
of commercial AV tools. In 2004, however, Christodorescu
and Jha demonstrated in [2] that encapsulation techniques
used in modern polymorphic viruses prevented commercial
anti-virus products from detecting otherwise functionally
identical variants of known malware. Given the closed na-
ture of commercial AV products, investigation of the efforts
employed by these companies is difficult, and the degree of
success in their implementations remains an open question.

3. Formalizing Unpack-Execution

The idea for an approach to automating the process
of extraction stems from the observation that a program at-

tempting to hide its behavior through obfuscation does so
because the code it hides is malicious. That is, if the code in
the obfuscated block was available to a static analyzer, the
program would be identified as malware. As such, the code
contained in the compile-time obfuscated block is not ex-
pected to appear anywhere in the statically-identifiable in-
struction code portions of the program. This observation
gives rise to a formal behavioral definition for capturing
both encrypted and polymorphic malware, and a method
for automating the process of extracting their hidden-code
independent of the unpacking mechanism used.

To help correspond formalism with practice, a running
example of an Intel 80x86-based unpack-executing program
will be used to clarify the context.

3.1. Basic Program Definition

In modern computers, programs can be conceptual-
ized as a composition of sets of ordered sequences of in-
structions and non-instruction data. Let a program P = (I,
D) be a two-tuple representation of these sets. The tuple I =
{i0, i1, ..., in} is a set of ordered sequences of instructions,
where ik = (o0, o1, ..., oj), 0≤k≤n is a particular ordered
sequence of instructions, and o ∈ ik is an instruction within
that sequence. The set D = {d0, d1, ..., dm} is similarly de-
fined as a set of ordered sequences of non-instruction data.

Define a conventional execution of P as an execution
where P does not generate and execute new ordered se-
quences of instructions. At any time during a conventional
execution, a special register called the program counter, or
pc, will point to an o ∈ i for some i ∈ I (the 40xxxx numbers
in Figure 2 correspond to the pc of each o ∈ i). Starting at o
and incrementing the pc (non-uniformly) some t times will
produce an ordered sequence ir = (o0, o1, ..., ot), where ir
is a subsequence of one or more i ∈ I.

3.2. Execution-Time Data Transformations

During execution, P may have access to data outside
of its own program data D; P may take in user input, read
files on disk, open network connections, etc. Let this ex-
ternal set of data be {e0, e1, ..., el}, and define E = {d0,
d1, ..., dm, e0, e1, ..., el} as the set of ordered sequences of
data P can access when it is loaded and executed. From a
semantic perspective, an ordered sequence of instructions ip
consisting of (possibly repeating) ordered instruction subse-
quences of members in the set I can represent a data trans-
formation function πp. Denoting an invocation of πp in an
execution of P to be πp(E), the function πp uses members
of E to produce transformed data dp.

4011d4 PUSH EBP
4011d5 MOV EBP,ESP
4011d7 SUB ESP,8
4011da CALL 00401170
4011df LEAVE
4011e0 RETN

4011e1 DB00
...
4011ef DB00

4011f0 PUSH EBP
...

 ik

ik+1

o5

 dj

 ...
 4011fb MOV DWORD PTR SS:[EBP-8],0

 401202 CMP DWORD PTR SS:[EBP-8],3D
 401206 JBE SHORT 00401210
 401208 JMP SHORT 00401235
 ...
 40121e XOR BYTE PTR SS:[EBP-9],7F
 ...
 401230 INC DWORD PTR SS:[EBP-8]
 401233 JMP SHORT 00401202

 401235 LEA EAX,DWORD PTR SS:[EBP-4]
 ...

 ix

p

402008 DB94
402009 DB55
40200a DB21
...
40203d DB50
40203e DB0c
40203f DB17

 dy

Figure 2: On the left, example program snippet partitioned into ordered instruction sequences ik and ik+1, non-
instruction data sequence dj; example of a single instruction o5 ∈ ik. On the right, a subsequence of ordered
instruction sequence ix comprises example data transformation function πp. πp operates over non-instruction data
sequence dy .

3.3. Behavioral Definition of a Unpack-
Executing Program

Under a conventional execution of P, the result of a
data transformation function, dp, can be treated as only data,
even if it represents a legitimate ordered sequence of in-
structions. Diverging from the model, however, introduces
the possibility that dp may indeed be executed. Assuming
that dp is a valid ordered sequence of instructions, this ex-
ecution can occur from either the pc being incremented to
point to an instruction o ∈ dp, or a control-transfer instruc-
tion (such as a call or jmp) oct in some i ∈ I explicitly di-
recting the pc to fetch its next instruction from dp.

A sequence of execution-time generated instructions
remains simply data if it is never executed. Combining
this fact with the previous observations gives rise to a
behavioral definition for an unpack-executing program.

Definition 3.1 A program P is said to be unpack-executing
if, at some point during its execution, the pc points to o,
an instruction in a to-be-executed instruction sequence ip,
where ∀i ∈ I, ip is not a subsequence of i.

One immediate observation is that Definition 3.1 cap-
tures both simple unpack-execute and polymorphic classes
of malware. Concisely, a polymorphic virus can vary its
decryption method in subsequent generations, but such a
mutation is orthogonal to the results of its unpack-execute
behavior.

3.4. Algorithm for Unpacked Code Extrac-
tion

The unpacked code extraction algorithm EXTRAC-
TUNPACKEDCODE described below operates by using the
static code view of an input program P as a model of
comparison when single-step executing P. Functionally, it

serves as a technique for determining whether a given pro-
gram exhibits behavior meeting the condition of Definition
3.1.

Posed as a decision problem, determining whether a
program P will exhibit unpack-execute behavior when
executed (subsequently, extracting its unpacked code) is
undecidable through a reduction from HALTTM ; a proof is
provided in Appendix A. In addition, an unknown malware
instance may exhibit no unpack-execute behavior, meaning
no amount of execution will yield runtime generated code.
Therefore, in order to bring the problem of extracting un-
packed code into the realm of decidability we introduce an
additional input parameter n as the number of instructions
of P to execute before halting.

Input: An input program P and instruction-execution
bound n.
Output: An instruction sequence ip representing runtime-
generated code, or NIL if P halts without exhibiting
unpack-execute behavior or the instruction-execution
bound n is reached.

EXTRACTUNPACKEDCODE(P, n)
begin

// Step 1: Static Analysis
// Disassemble P to identify code and data. Partition
// blocks of code separated by non-instruction data into
// sequences of instructions i0, ..., in. These sequences
// form the set I (the static code view). I will be
// repeatedly queried in the dynamic analysis step to
// detect if P is executing unpacked code.

I = DISASSEMBLE(P)

// Step 2: Dynamic Analysis
// Execute P one instruction at a time. Pause execution
// after each instruction and acquire the current

402008 JMP SHORT 00402034
40200a POP ESI
40200b MOV DWORD PTR DS:[ESI+8],ESI
40200e MOV BYTE PTR DS:[ESI+7],0
402012 MOV DWORD PTR DS:[ESI+C],0
...
402034 CALL 0040200A
...
40203e JNB SHORT 004020A8

 dp

402008 DB94
402009 DB55
40200a DB21
...
40203d DB50
40203e DB0c
40203f DB17

 dy

p(dy)

...
401248 JMP 402008
...

 ix

1

2

Figure 3: (1) Data transformation function πp (shown in Figure 2) uses members of ordered data sequence dy to
create ordered instruction sequence dp. (2) Later, a jmp control-transfer instruction in ordered instruction sequence
ix directs execution to dp.

// instruction sequence by performing in-memory
// disassembly starting at the current value of the pc
// until non-instruction data is found. Compare the
// current instruction sequence with each instruction
// sequence in the set I. If the current instruction
// sequence is not a subsequence of any member of I,
// then it did not exist in the static code view of P
// (i.e., it is unpacked code being executed).

for 1 to n do
1. Execute an instruction of P.
2. Acquire the current pc of P, pccur.
3. Using pccur, perform in-memory disassembly

until non-instruction data is found to acquire the
instruction sequence icur.

if ∀i ∈ I, icur is not a subsequence of i then
return icur (the unpacked code)

done
return NIL

end

4. Implementing EXTRACTUNPACKEDCODE

Implementing the algorithm presented in Section 3
on actual hardware and operating systems requires care in-
dependent of the formalism motivating its implementation.
This section details the implementation of the algorithm and
where applicable, discusses additional considerations and
the manner in which they were handled.

4.1. Hardware Platform and Operating Sys-
tem

We have implemented EXTRACTUNPACKEDCODE
(i.e., PolyUnpack) as a command-line tool that operates
over x86 Microsoft Windows executables (ideal for experi-
mentation with large sets of malware). The tool uses soft-

ware and hardware breakpoints, and Windows API calls
to single-step execute a program; static and dynamic dis-
assembly is performed using a 80x86 32-bit disassembler
library [18]. For outputting the complete executable ver-
sion of unpacked code found, we integrated the source of a
debugged process memory dumper [5].

4.2. Dynamic Link Library (DLL) Calls

A naive step-through of any MS Windows binary ex-
ecution will almost always result in the detection of code
not found in the binary’s static disassembly due to the pres-
ence of DLL calls. Stepping into a DLL call results in step-
ping through that DLL’s code; such a case must be avoided.
To prevent misidentification of DLL code, whenever a new
DLL is loaded, PolyUnpack records the memory range the
DLL occupies. During single-step execution, the program’s
pc is continually compared against all known memory ar-
eas. If the pc enters a region occupied by a DLL, PolyUn-
pack reads the return address from the stack and sets a
breakpoint there, allowing single-step execution to resume
after the call’s return.

4.3. Enhancing Detection Accuracy and
Speed

A straightforward implementation of the EXTRAC-
TUNPACKEDCODE algorithm described in Section 3 would
need to overcome significant obstacles in order to be viable.
In terms of performance, efficiently testing whether the cur-
rent instruction sequence exists in the static code view of
the entire binary after the execution of every instruction
requires considerable effort. More importantly, the imple-
mentation would have to mitigate threats stemming from the
nature of 80x86 assembly, structural properties of the MS
Portable Executable (PE) format, and the degree to which
the MS Windows OS enforces the PE specification. Key

challenges arising from these threats include the ability to
perform accurate disassembly and relatedly, the successful
separation of code and data.

In the 80x86 Instruction Set Architecture (ISA), assem-
bly instructions are of variable length, and a compiler or
assembler which targets this platform can mix instructions
and data together. These properties create an inherent prob-
lem of performing correct disassembly given the inability of
a disassembler to statically determine the outcome of some
80x86 instructions (such as indirect branches). Although
recent approaches have been proposed to significantly en-
hance the accuracy of disassembling x86 binaries [11], in-
correct disassembly of even one instruction could cause EX-
TRACTUNPACKEDCODE to falsely report the existence of
unpack-execute behavior.

Besides the need to accurately disassemble known code
sections of an x86 binary, the manner in which MS Win-
dows handles the execution of a program introduces the
possibility that non-code regions must also be examined.
To elaborate, while the PE header describes whether each
program section is readable, writable, or executable, only
the readable and writable flags are enforced. As a conse-
quence, there may exist non-obfuscated code in sections
marked non-executable, including the PE header itself. As
a program can either begin or immediately direct execu-
tion to these regions, a faithful implementation of the al-
gorithm should correctly tag them as code. However, accu-
rate identification (and subsequently, disassembly) of these
extra code sections can be exceptionally difficult given the
aforementioned properties of the 80x86 ISA.

To overcome the disassembly and identification chal-
lenges required for implementing EXTRACTUNPACKED-
CODE, the problem of detecting the execution of unpacked
code via instruction subsequence existence can be mapped
into a series of statically assigned and dynamically created
bounds checks that test whether the current value of the pc
points to a location statically or dynamically identified as
code. Applying this observation was critical in implement-
ing an efficient, accurate version of EXTRACTUNPACKED-
CODE that emits no false positives in its search for unpack-
execute behavior.

4.4. Evasion

PolyUnpack, like most instrumentation tools, is not
transparent to the malware being processed. Therefore,
there exists the possibility that an instance of malware be-
ing executed in PolyUnpack may detect that it is being in-
strumented and alter its behavior (e.g., halting its execution
instead of generating hidden-code) in order to evade extrac-
tion of its unpacked code. While there is no comprehen-
sive solution to identifying all attempts by malware to detect
the presence of instrumentation tools short of implementing

an entire virtualized environment, preventing common-case
evasion attempts do not require difficult-to-implement so-
lutions. As an example, in our implementation we unset a
bit in the thread information block (TIB) which indicates
that the program is being instrumented or debugged. This
modification causes calls to IsDebuggerPresent() and its as-
sembly equivalents to return false.

Finally, the decision to attach an instruction-execution
bound n in EXTRACTUNPACKEDCODE, although bringing
the problem of detecting unpack-execute behavior into the
realm of decidability, introduces the possibility that a pro-
gram’s execution will be halted before it begins executing
unpacked code. One approach to minimizing the risk of
prematurely terminating a malware’s execution is to select
sufficiently large values for the instruction execution-bound
n and testing multiple malware instances simultaneously
(each in its own isolated environment).

4.5. Multiple Unpacking

Some instances of unpack-executing malware further
complicate the process of extracting their unpacked code
by having the unpacked code perform additional unpacking.
The primary consequence of processing malware that uses
this technique is that the (partially unpacked) code extracted
contains code yet to be unpacked. In addition, the portion
of still-obfuscated code may itself perform unpacking once
unpacked; we refer to this behavior as multiple unpacking.

For instances of malware that perform multiple unpack-
ing, PolyUnpack can be used to acquire the innermost body
of unpacked code by leveraging its ability create a complete
executable version of the hidden-code extracted. In this sce-
nario a version of the malware being instrumented is first
written out; execution in the new binary is changed to begin
at the first instruction of the unpacked code. The new bi-
nary can then be tested for unpack-execute behavior in the
exact same manner as the original malware instance. This
two-step process is performed until some kth version of the
executable produces no unpacked code; this version repre-
sents the final body of the unpacked code.

5. Experimentation Framework

Security organizations such as Anti-Virus (AV) com-
panies are faced with a flood of new samples being sub-
mitted by users, sensors, honeypots, and mail filters. The
volume of the samples received makes manual analysis
and reverse engineering of unpack-executing malware a
very time-consuming and laborious task. In such an en-
vironment, the primary goal of PolyUnpack is to determine
whether a given sample exhibits unpack-executing behavior
and if so, to automatically extract its hidden-code for use
with existing analysis techniques.

To evaluate how well PolyUnpack assists malware re-
verse engineering and analysis we would ideally have ac-
cess to the inner workings of several AV company labs.
However, because of trade secrets and the highly compet-
itive nature of the AV industry, this type of access was sim-
ply not possible. Most AV companies will not even discuss
how their commercial tools work in any detail, much less
the operation of in-house tools built for Research and De-
velopment (R&D).

5.1. Malware Analysis System Design

To overcome the inaccessibility of commercial AV lab
resources we created a simple malware analysis system to
evaluate PolyUnpack. The workflow of this system con-
sists of the arrival of a sample, its initial classification, ex-
portation of unidentified samples to a robot machine farm,
and re-analysis using the results of hidden-code extraction.
This entire process occurs in a pipelined fashion, as shown
in Figure 4.

Processing
Component

1

2 43
Hidden-Code

Extraction
VMWare

Initialization

OS Conflict, etc.

Reduction/Dispatch
Component

5

Analysis
Component

Instrumentation/
Execution

2-4

Figure 4: Workflow used to process samples.

Starting with Step 1, a sample arrives from one of vari-
ous feed sources. It is analyzed by malware detectors and
its MD5 value is computed and checked against previously
seen instances. In a production environment no further pro-
cessing occurs if it is found to be malicious or if a previ-
ously analyzed sample with the same MD5 is found. This
step comprises the reduction component, which eliminates
unnecessary work.

If the sample remains unidentified it is sent to one of
several machines on a robot farm. The robot starts a vir-
tual machine (VM) that has been configured to make the
sample available to the VM environment and then instruct
PolyUnpack to begin executing it (Steps 2, 3). If PolyUn-
pack detects the sample exhibiting unpack-execute behav-
ior it writes out a plain-text disassembly, binary dump, and
complete executable version of the unpacked code and then
halts the sample’s execution (Step 4). This information is

then sent to Step 5 (the analysis component), where the
complete executable version of the unpacked code is ana-
lyzed by malware detectors and its MD5 value is calculated.

If the sample’s unpacked code is not identified by mal-
ware detectors or MD5 value it is forwarded to a human an-
alyst for further analysis. Similarly, samples that terminate
without exhibiting unpack-execute behavior, which cannot
run in the guest OS of the virtual environment, or which
exceed a preset time limit (i.e., the instruction execution
bound) when being executed by PolyUnpack are also for-
warded.

5.2. Implementation

The layout of the malware analysis system consisted
of a cluster of three machines (the robot machine farm) run-
ning Linux and VMWare Server and one Linux machine
running a small daemon we created to handle the workflow
process. Each robot has a virtual machine with Windows
2000 installed and is configured to start in a state immedi-
ately before processing a sample using PolyUnpack. The
start state (called a snapshot) represents a paused copy of
the system, which includes the contents of disk, memory,
and the CPU state. Using snapshots, we can save consider-
able time by not needing to reboot the virtual machine for
each new sample. Relatedly, returning to the state of the
snapshot discards all changes (e.g., disk writes) made by
the previous sample, allowing us to provide the same ster-
ile, isolated environment for each sample.

When a sample arrives at the workflow handler’s input
queue, the daemon dispatches the sample to a robot and is-
sues a command to start its VM. After being loaded from
its snapshot state, the Windows 2000 OS mounts a net-
work share (where the sample has been placed) and directs
PolyUnpack to begin single-step executing it. If the sam-
ple exhibits unpack-execute behavior, PolyUnpack writes
out versions of its unpacked code and processing informa-
tion to the network share, halts the sample’s execution, and
directs the daemon to terminate the VM session. After stop-
ping the VM session, the daemon harvests information from
the directory corresponding to the network share, processes
and archives it, then dispatches the next sample to the (now
available) robot machine.

While single-step executing a sample, PolyUnpack peri-
odically sends status messages via the network to the work-
flow daemon. The absence of three such messages implies
that the sample may have frozen or crashed PolyUnpack or
the Windows OS and will trigger the daemon to terminate
the VM session. Additionally, the daemon places a time
limit (in our implementation, four hours) on the running
time of each VM session, which is the implementation’s
equivalent of the instruction execution bound described in
Section 3. If this limit is exceeded the daemon halts the

virtual machine regardless of its current state.

6. Evaluation

6.1. Preliminaries

To provide input to the malware analysis system we
acquired 3,467 samples from the OARC [8] malware sus-
pect repository. Its contents are semi-public and available
to qualified academic and industry researchers upon re-
quest. The samples it contains were captured in the wild
from September 2005 to January 2006 by mail traps, user-
submissions, honeypots and other sources aggregated by
the OARC; each sample is a unique binary according to its
MD5 value. While we were able to confirm that each of the
samples tested is indeed malware, their real-world nature
made it difficult to determine the exact percentage of what
samples are packed or unpacked.

6.2. Hidden-Code Extraction

For evaluating the ability of PolyUnpack to success-
fully extract hidden-code from malware without knowing
the ground truth of which samples were packed, we com-
pared its performance to that of PEiD. As mentioned in Sec-
tion 2, PEiD is a popular and often-used reverse engineering
tool that uses a highly specific set of signatures to identify
whether a binary will exhibit unpack-execute behavior. It
does not unpack a sample, but simply tries to identify what
packing tool was used.

PECompact
13%

MEW
12%

Other
11%

UPX 28%

ASPack 2%
Armadillo 2%

FSG 3%

PEX 2%
Obsidium 1%

EZIP 1%
Yoda's Protector 1%

EXEStealth 3%

Morphine 2%
UPX-Scrambler 2%

ASProtect 6%

Upack 3%

MoleBox 8%

Figure 5: Distribution of code packing tools used in sam-
ples PolyUnpack successfully processed.

Using the malware analysis system, PolyUnpack found
1,754 samples to be unpack-executing and extracted their

hidden-code. In contrast, PEiD identified only 1,482,
which suggests that PolyUnpack performs competitively
well. Figure 5 displays a breakdown of the well-known
tools used to create hidden-code in the samples PolyUnpack
successfully processed. These results show that PolyUn-
pack is indeed capable of extracting unpacked code in a
obfuscation-independent fashion (i.e., without needing any
knowledge of how the runtime code is generated) over a
wide variety of real-world malware.

6.3. Processing Time

Analysts have reported that manually unpacking a
given malware instance takes between 15 and 60 min-
utes [15]. With hundreds of suspect samples arriving each
day, there exists a clear need to create efficient tools that as-
sist in streamlining the process of unpacking. To determine
the efficiency of PolyUnpack, we recorded the processing
time (including the 30 seconds for VMWare’s startup and
shutdown) for each sample. Of the samples from which
PolyUnpack extracted unpacked code, the average time was
1,020 seconds, or less than 20 minutes; over 60% took less
than five minutes. These results suggest that PolyUnpack
is capable of processing samples in an automated fashion
without sacrificing efficiency, and can save malware re-
searchers considerable amounts of time by removing the
need to perform extraction manually.

6.4. Post-Extraction Code Duplicates

In order to determine the rate of unpacked code du-
plicates, we began with the complete executable versions of
hidden-code extracted by PolyUnpack. We grouped these
instances by their MD5 value to acquire the total number of
unique instances; there were 1,260. Therefore, there were
494 duplicates, which accounted for 28% of the total set of
unpacked codes. This result indicates that there are a non-
trivial percentage of duplicates, and that PolyUnpack can
help prevent time spent manually unpacking a sample that
appears to be different, but once unpacked, is identical to a
sample previously processed.

6.5. AntiVirus Detections

As each OARC binary sample went through the anal-
ysis system, it was scanned with up-to-date AV tools Cla-
mAV and McAfee Antivirus to identify known malware in-
stances (for testing purposes, a sample was not discarded
if it was found to be malicious). ClamAV identified 2,746
of the samples as malware, while McAfee identified 3,138.
Among the samples deemed benign by ClamAV, PolyUn-
pack found 252 to be unpack-executing. For McAfee, 83 of

0 2 4 6 8 10 12 14 16 18

McAfee

ClamAV

W32/Spybot.worm.gen.b

W32/Gaobot.worm.gen.d

MultiDropper-OR

Generic Downloader.c

BackDoor-AVW.dr

W32/Pate

Generic.b.worm

W32/Gaobot.worm.gen

W32/Sdbot.worm.gen

Exploit-DcomRpc.gen

Figure 6: Distribution of malware samples found to be benign initially, but malicious after unpacking.

the samples it identified as harmless were found to contain
hidden-code.

When the complete executable versions of the unpacked
code were presented to ClamAV, an additional 23 were suc-
cessfully identified as malware. For McAfee, an additional
19 were identified. To elaborate, in packed form, these in-
stances evaded both signature detection and heuristic anal-
ysis of the AV tools. Once unpacked, however, they were
successfully detected; Figure 6 shows a grouped distribu-
tion of these samples by malware type. Relative to the
number of benign samples for each tool found to be unpack-
executing, this result shows that hidden-code extraction pro-
vided false negative reductions of 9.1% and 22.8% for Cla-
mAV and McAfee, respectively.

The above results suggest ways to improve AV tools.
PolyUnpack is able to automatically identify and extract
unpacked code because it executes a given binary in an iso-
lated, virtual environment. Provided a similar solution is
implemented with care, we believe client-side AV tools can
do the same to improve detection rate. That is, rather than
just statically scanning the binaries on a client computer,
an AV tool could run a suspect binary in a small, dedicated
virtual environment on a local computer using a technique
similar to that used by PolyUnpack, then perform additional
analysis on its output (unpacked code). Alternatively, to re-
duce overhead on a client computer, the client-side AV tool
could instead send the suspect binary to a central AV server,
which can then run it in a virtual environment and send the
results back to the client computer for further analysis.

7. Conclusion

The analysis and detection of malware that hides ma-
licious code as data can be a very time-consuming and chal-
lenging task. In this paper we have described PolyUnpack,
an approach to automatically identifying and extracting the
hidden-code bodies of unpack-executing malware. Our ap-
proach is based on the observation that sequences of packed

or hidden code in a malware instance can be identified when
its execution is checked against its static code model.

We have derived from this observation a formal defini-
tion for the unpack-executing behavior of a program. We
have implemented our hidden-code extraction algorithm as
PolyUnpack, a command-line tool on the x86 MS Windows
platform. We have evaluated PolyUnpack using more than
3,400 known malware binaries. The results of our exper-
iments showed that PolyUnpack identifies more unpack-
executing malware than PEiD, a popular tool for identifying
unpack-executing programs. Our results also showed that
PolyUnpack can perform extraction efficiently, and can be
incorporated into a malware analysis workflow to achieve
significant automation, yielding savings of both time and
effort. Finally, our results demonstrated that PolyUnpack
(or rather, the idea and algorithm behind it) can be used to
improve the performance of malware detection tools.

7.1. Future Work

In future work, we will improve our ability to remove
duplicate samples. Currently, we remove duplicates using
MD5 signatures. This technique is simple and effective,
but may still result in double counting functionally identi-
cal samples. We expect to achieve better reductions using
graph flow analysis (e.g., [1]), and heuristics to identify
programs that are functionally the same.

Finally, although we briefly addressed making instru-
mentation transparent to an instance of malware being
processed, malware can also evade through detection of the
virtualized environment. For example, virtualization prob-
lems with some instructions in the x86 architecture [14]
provide simple ways for a program to detect that is running
inside a VM. In future work, we intend to investigate
techniques (such as clever application of virtualization
hardware extensions) for making the virtualized environ-
ment more transparent to programs that may check for a
VM’s presence.

Acknowledgements. This work is supported in part
by NSF grant CCR-0133629 and Office of Naval Research
grant N000140410735. The authors would like to thank H.
Venkateswaran, Monirul Sharif, and Richard Hoelsher for
their advice and feedback in the creation of this paper.

References

[1] E. Carrera and G. Erdélyi. Digital genome mapping: Ad-
vanced binary malware analysis. Virus Bulletin, 2004.

[2] M. Christodorescu and S. Jha. Testing malware detectors.
In Proceedings of the ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA’04), 2004.

[3] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-aware malware detection. In IEEE Sym-
posium on Security and Privacy, May 2005.

[4] DataRescue, Inc. The ida pro disassembler.
www.datarescue.com/idabase, 2006.

[5] Gigapede. OllyDump v. 3.0, 2006.
[6] I. Guilfanov. Personal correspondence. January 30 2006.
[7] C. Hoepers. Phishing’s Cutting Edge: Brazil and

the Future of Phishing. www.antiphishing.org/events/
apwg nov 05 montreal.html, 2005.

[8] Internet System Consortium. Isc oarc. oarc.isc.org, 2006.
[9] Jibz, Qwerton, snaker, and xineohP. PEiD. peid.has.it, 2005.

[10] T. Kojm. Clam antivirus. www.clamav.net, 2006.
[11] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static

disassembly of obfuscated binaries. In Proceedings of
USENIX Security 2004, pages 255–270, 2004.

[12] McAfee, Inc. Advanced virus detection scan engine
and dat. www.mcafee.com/us/local content/white papers/
wp scan engine.pdf, 2002.

[13] McAfee, Inc. Antivirus. www.mcafee.com, 2006.
[14] J. Robin and C. Irvine. Analysis of the intel pentium’s ability

to support a secure virtual machine monitor. In Proceedings
of the 9th USENIX Security Symposium, 2000.

[15] R. Russell. Personal correspondence. January 29 2006.
[16] P. Szor. Bad idea. Virus Bulletin, pages 18–19, April 1998.
[17] P. Vandevenne. Using the universal PE plug-in in IDA Pro

4.9 to unpack compressed executables. www.datarescue.
com/idabase/unpack pe/unpacking.pdf, 2005.

[18] O. Yuschuk. 80x86 32-bit disassembler and assembler.
www.ollydbg.de/srcdescr.htm, 2006.

A. Undecidability of Detecting Unpack-
Execution

A standard computer program P has at least one de-
fined (immutable) code section and can also have one or
more (mutable or immutable) data sections. In addition,
while running P can write data to one of these sections and
then direct execution to what it wrote. Formally, this abil-
ity makes P a universal Turing machine (UTM), which can
simulate other Turing machines it reads (or writes) on its
input tape.

Key structural equivalencies between programs and UTMs
are listed below.

• The immutable code section of a program corresponds
to the immutable control states of a UTM.

• The mutable data section(s) of a program corresponds
to the mutable input tape(s) of a UTM.

The key functional equivalence is as follows.

• A program directing its execution to one of its data
sections (exhibiting unpack-execute behavior) corre-
sponds to a UTM running a Turing machine on its in-
put tape.

Based on these equivalencies, we formally define
the problem of determining whether a universal Turing
machine M simulates a Turing machine on its input tape
(i.e., whether a program exhibits unpack-execute behavior)
as follows.

Definition UNPACKEXTM = {〈M, w〉 | M is an UTM
and M simulates a Turing machine on its input tape in its
computation of w}.

Theorem UNPACKEXTM is undecidable.
Proof: We will prove that UNPACKEXTM is undecidable
by describing a mapping reduction which shows that
HALTTM≤mUNPACKEXTM Define a function f that takes
as input 〈M, w〉 and outputs 〈M′, w′〉, where 〈M, w〉 ∈
HALTTM if and only if 〈M′, w′〉 ∈ UNPACKEXTM . The
following machine F computes f.

F=“On input 〈M, w〉, a valid encoding of a Turing machine
M and input string w:

1. Construct a Turing machine T.
T=“On input x:

1. Ignore x and halt.”
2. Construct the following UTM M′ from M.

M′ is the same as M, except:
for all q ∈ Q, γ ∈ Γ

if δ(q, γ) goes to a halting state (that is,
(if δ(q, γ) = (q{accept,reject}, −, −)) then

Replace this transition with one that
begins simulation of T on the input tape.
That is, change the transition to δ(q, γ) =
(qstart,T , −, −).

3. Output 〈M′, 〈T, w〉〉.”

The output of F, a UTM M′, will execute a Turing ma-
chine T in all and only those cases where M will halt on w.
A decider for UNPACKEXTM could decide if M′ will exe-
cute T and therefore decide HALTTM . But HALTTM does
not have a decider, and so a decider for UNPACKEXTM

cannot exist. Therefore, UNPACKEXTM is undecidable. 2

