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Abstract 

 
We present an extension of traditional "black box" fuzz 
testing using a genetic algorithm based upon a 
Dynamic Markov Model fitness heuristic.  This 
heuristic allows us to "intelligently" guide input 
selection based upon feedback concerning the 
"success" of past inputs that have been tried.  Unlike 
many software testing tools, our implementation is 
strictly based upon binary code and does not require 
that source code be available.  Our evaluation on a 
Windows server program shows that this approach is 
superior to random black box fuzzing for increasing 
code coverage and depth of penetration into program 
control flow logic. As a result, the technique may be 
beneficial to the development of future automated 
vulnerability analysis tools.  
 
1. Introduction 
 
     As the number of households and businesses 
owning personal computers continues to climb, data 
and software security are becoming growing concerns.  
According to the National Vulnerability Database, the 
number of reported software vulnerabilities has risen 
from 25 in 1995 to nearly 5000 in 2005 [13]. As a 
result, there has been a great deal of commercial and 
academic interest in developing automated software 
security tools. 
 Vulnerability analysis involves discovering a subset 
of the input space with which a malicious user can 
exploit logic errors in an application to drive it into an 
insecure state.  As software becomes larger and more 
complex, exploring a commercial application’s entire 
state space for exploitable vulnerabilities becomes an 
intractable problem. To reduce the scope of 
exploration, security researchers have developed a 
number of testing techniques.  White box testing, also 
known as structural or glass box analysis, typically 
involves detailed, manual analysis of either program 
source code or a static1 disassembly. It is based upon 
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the assumption that the tester has internal knowledge 
of the system during the test case generation process.  
In contrast, the black box or functional testing 
methodology views a program as a “black box”.  It 
does not rely upon either source code or disassembly. 
Rather, it is based upon injecting random or semi-
random external input into a program and then 
monitoring its output for unexpected behavior. This 
process is also sometimes referred to as fuzz testing or 
fault injection [7].  Time and cost are motivating 
factors in application security.  Black box fuzzers have 
become popular in recent years because they provide a 
favorable cost / benefit ratio due to their simplicity and 
potential for automation.  
     What black box fuzzers lack, however, is input 
selection based upon guided feedback concerning 
progress within the program logic being tested. In 
practice, security researchers frequently encounter 
situations where they have analyzed and located a 
potentially exploitable location in a program which is 
dependent upon some user controlled input. An 
example might be a packet received over a network 
connection by an application that is subsequently sent 
into some API function known to be vulnerable to 
buffer overflows.  Exploitability, however, also implies 
reachability. That is, in order to determine if the 
vulnerability is an exploitable threat, one must prove 
that it is reachable on the execution path given some 
user supplied input.  The exact format of this input is 
dependent upon the control flow logic on the path 
between the packet acceptance and the basic block 
where the vulnerable API function is used.  Figure 1 
provides a graphical illustration of this idea. 
     Ideally, a fuzzer should have some basic 
“intelligence” that allows it to preferentially drive 
execution through any input dependent parse logic to a 
suspected vulnerable location.  We feel that a genetic 
algorithm is well suited to this task. This was 
motivated by several observations:  
• The runtime execution trace of a program is 

dependent upon both its user supplied input and the 
static structural characteristics of its control flow 
graph. Therefore, if a given input makes it closer to a 
region of the control flow graph that we wish to  



 
Figure 1. An idealized diagram of the input crafting 
problem (i.e. what input will cause the program to 
exercise the control flow logic on the path from the 
recv function to a potentially vulnerable strcpy()?) 
 

explore than some other input, it may have some 
desirable characteristics which make it capable of 
satisfying some (if not all) of the logical constraints 
on that path.  Thus some “invalid” inputs may be 
better than other “invalid” inputs. 

• If we somehow combine or “breed” the best of the 
invalid inputs we’ve found in the past, we may select 
for those characteristics in the future which 
maximize the number of constraints we are able to 
satisfy on the execution path and thus increase our 
overall exploration of the program state space.  This 
is the “survival of the fittest” axiom. 

 
     The essential contribution of this paper is threefold.  
First, we extend traditional "black box" fuzz testing 
using a genetic algorithm based upon a Dynamic 
Markov Model fitness heuristic.  This heuristic allows 
us to "intelligently" guide input selection using a 
genetic algorithm based upon dynamic feedback 
concerning the "success" of past inputs that have been 
tried.   
     Second, we build upon the idea of using a partially 
specified input structure.  The input structure is 
specified via a context-free grammar and "evolved" 
using grammatical evolution [16].  
     Lastly, we focus upon implementing a practical, 
prototype using existing tools and technologies. We 
used the open source PAIMEI reverse engineering 
framework to construct a source code independent 
testing tool [14].  Thus, our prototype can be easily 
extended and implemented by others.  Our intelligent 
fuzz testing tool provides focused code coverage and 
targeted execution control by driving program 
execution to selective regions of interest in the code 
(which are suspected to contain vulnerabilities or 
bugs).  Unlike many existing tools, our implementation 
doesn’t require source code.  Thus our prototype can 
be readily used to analyze commodity software. 

Finally, a grammar frees us from being bound to a 
particular protocol.  If the user wishes to fuzz a new 
protocol, all he or she has to do is replace the grammar 
file.  
     The paper organization is summarized as follows:  
Section 2 discusses our methodology with 
implementation specifics covered in Section 3.  
Experimental evaluations are discussed in section 4.  
Section 5 follows with an analysis of the limitations of 
our technique.  Related work is discussed in section 6.  
Finally, in section 7 we conclude with a few ideas for 
future work. 
 
2. Methodology 

 
     In this section, we describe an intelligent black box 
fuzz testing methodology capable of crafting inputs 
which force an application to execute specific 
dependent portions of its control flow graph (see 
Figure 1).  The ability to selectively drive exploration 
of an application’s state space is useful for a fuzz 
testing tool when the vulnerability analyst wishes to 
focus testing on a specific portion of a program’s 
control flow graph or “drill down” to a specific node 
suspected of containing a vulnerability.  Clearly a 
binary response indicating whether a given input 
reaches the destination state or not is insufficient.  We 
require a smoothed projection of the search space, 
where some inputs are more nearly correct than others.  
We use the control flow graph of an application to 
create such a fuzzy search space. 
 

2.1. Modeling Dynamic Control Flow as a 
Markov Process 
 
     A control flow graph for an executable program is a 
directed graph with nodes corresponding to blocks of 
sequential instructions and edges corresponding to 
non-sequential instructions that join basic blocks (i.e. 
conditional branch instructions.)  A control flow graph 
for a binary executable can be obtained using a 
disassembly engine, such as IDA Pro [9]. 
     If we treat the transition behavior of an arbitrary 
input at a particular basic block in the control flow 
graph as an estimated parameter, we can develop a 
probabilistic model called an absorbing Markov 
process for input behavior from the control flow graph.  
A Markov process is a type of stochastic process in 
which the outcome of a given trial depends only on the 
current state of the process [15].  A system consisting 
of a series of Markov events is called a Markov chain.  
If certain outcomes in the Markov chain loop directly 
back to any state with absolute certainty, it is called an 
absorbing Markov chain [15].  The edge probabilities 
for our Markov process correspond to the probability a 
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random input will take a given state transition in the 
control flow graph.  As we are only interested in 
estimating the probabilities along paths which lead to a 
desired state, we treat all transitions leading off of the 
subgraph consisting of these paths as transitioning to a 
common absorbing state, which we call the rejection 
state. Any program behavior made after reaching the 
target state can also be ignored, so we treat this node in 
the control flow graph as an absorbing state as well and 
call it the acceptance state.  Figure 2 illustrates this 
idea. 
     Rather than determining the absolute probability   
values for these transitions, we try to estimate them by 
considering each input tested as a biased statistical 
sample of this Markov model.  The solution space is 
therefore simply the probability of an input taking a 
particular execution path in the sampled Markov 
process.  The estimated probability of following a 
given execution path is therefore: 

i
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Where tri is the total number of inputs that have taken 
edge transition i , and bbi  is the total number of inputs 
which have reached the block containing the 
conditional statement for edge transition i . 
 
2.2. Searching the Input Space with a Genetic 
Algorithm  
 
     Evolutionary computation is a field of machine 
learning which attempts to mimic the process of 
evolution to derive solutions for a certain task [3].  
Genetic algorithms are evolutionary algorithms that 
function as stochastic global optimizers.  A genome in 
a genetic algorithm represents one potential solution 
(e.g. for a problem requiring a string input, the string 
would be a genome).  Genetic algorithms operate 
iteratively on populations of genomes.  Each iteration 
is called a generation.  In each generation, all of the 
genomes in the population are evaluated by a fitness 
function.  The fitness function measures their 
suitability within their environment.  The genomes 
which score the highest fitness are then selected for 
crossover.  Crossover can be likened to biological 
breeding.  It is a mechanism that allows useful 
genomes to be combined to produce newer and 
hopefully more fit genomes.  Less fit genomes are 
simply discarded. This mimics the process of natural 
selection.  Finally, to widely explore the solution 
space, certain genomes in the population are mutated.  
Mutation makes a random change within a genome 
(e.g. bit flip, swapping of bytes, ect).  

     The genomes in our genetic algorithm 
implementation correspond to individual inputs for the 
application.  We build each input string from a variable 
length integer genome using a user-specified context-
free grammar and grammatical evolution [2].  The 
fitness of each genome is the inverse of its execution 
path’s estimated probability derived from the estimated 
Markov process probabilities on the control flow 
graph. 

Fitness 
∏

=

l
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     Where l is the length of the execution path for input 
x on the control flow graph, and pi corresponds to the 
estimated probability of taking edge i in the control 
flow graph.  Because our fitness function depends on 
the behavior of all of the other genomes in a 
generation, it is necessary to compute the fitness value 
for a particular generation of genomes, we first find the 
execution path for all members of the population and 
update the transition probabilities of the Markov chain.  
We then find the probability of each genome’s 
execution path using the updated dynamic Markov 
model. 
     Because the genetic algorithm is attempting to 
create strings that will follow the least probable 
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Figure 2. Markov probabilities associated with 
state transitions on a control flow graph.  The 
white and black squares represent nodes on a 
control flow path from a given source node (A) to a 
destination node (M).  The grey squares represent 
reject nodes (nodes from which it is no longer 
possible to reach the destination node (M) ). The 
black squares represent the path taken by an 
arbitrary input through the control flow logic.  This 
path consists of node transitions 
A→C→E→D→G→M.  We can calculate the fitness 
of this input by multiplying the edge transition 
probabilities:   

Fitness = 1 / (.75 × .9 × .5 × .67 × .8) = 5.525 



execution paths, it will bias our sampling.  While this 
may at first seem to be a disadvantage, it is actually an 
advantage.  The resulting fitness function calculation is 
actually the probability the genetic algorithm has 
produced a string which followed a given execution 
path.  This will reward those genomes in the 
population that represent input that that takes 
previously unexplored execution paths as well as rare 
(i.e. difficult) execution paths.  
 
2.3. Grammatical Evolution 
      
     Grammatical evolution is a special type of genetic 
algorithm that can evolve strings in an arbitrary 
context-free language [2].  Rather than directly 
encoding the resulting string in its genome, the genome 
encodes production rules to produce a string from a 
specified context-free grammar.  Each genome is a 
variable length integer string.  The algorithm used to 
produce a string from the grammar using a genome is 
summarized in Figure 3.  Figure 4 illustrates the 
construction of a genome from a context-free grammar 
via grammatical evolution. 
 

    Because the input space for the program represents 
the search space for our program, its combinatorial 
nature makes blindly generating variable length binary 
input in a linear genome (as is usual in genetic 
algorithms) inefficient.  Rather than using the usual 
representation, our genomes represent instructions for 
building the input from a user-specified context-free 
grammar, following the Grammatical Evolution 
paradigm.  This not only gives the user the ability to 
narrow the search space based on knowledge of their 
specific application, it also gives the genetic algorithm 
flexibility to represent input with similar structural 
characteristics as being more nearly adjacent in the 
search space  (e.g. Creating matching HTML tags in a 
variable 
length linear genome would require four insertion 
mutations for each bracket character and one mutation 
for the slash character that all happen to occur in the 
right position, but with the correct grammar, 
grammatical evolution would require just one insertion 

mutation that added the tag generation production rule 
to the genome). 
 

 

 3. Implementation 
 
     In order to implement our approach as a practical 
tool, we needed to address several requirements: 
 
Disassembly And Control Flow Graph Extraction: 
The control flow graph used in our methodology is 
actually a subgraph of the overall program control flow 
graph.  It consists of all basic blocks on a path between 
an input block and a desired acceptance (i.e. 
destination) block.  All edges leading to blocks off this 
subgraph are assigned to a special rejection set.  
Custom Debugger: We use a debugger for lightweight 
basic block level binary instrumentation.  This is 
necessary for us to track the runtime execution path 
and gather the statistics necessary for the genetic 
algorithm to rate the fitness of individual inputs.  
Specifically, we set breakpoints in the test application 
on the entry points of all nodes in the control flow 
subgraph and rejection set.  We then run the test 
application successively on a randomly supplied 
population of inputs.  In the breakpoint handler, we 
track the execution path up to the point where the 
execution path reaches a rejection node (i.e. the 
destination is no longer reachable along all subsequent 
execution paths) or terminates in success.  At this 
point, we calculate the fitness for the input 
probabilistically using the previously discussed 
Markov Chain heuristic. The fittest individuals are 

Figure 3. Pseudocode for grammatical evolution. 

while ( nonterminals in the string ) 
{ 
     find first nonterminal 
     numRules = number of production   
                rules for the  
                nonterminal 
     i = next integer in the genome %  
         numRules 
     apply production rule i 
} 

  0  1  2
S  sAs | xBx | m 
A  bBb | B   
B  aAa | C | AB 
C  C | d | e 
 
      1           0               0                    
S    xBx   xaAax    xabBbax   
     1                  1 
      xabCbax  xabdbax 

Figure 4. Construction of a genome from a context-
free grammar.  Construction begins with the initial 
rule S.  The application of production rule S[1] 
results in the new string xBx.  The nonterminal B is 
then replaced by B[0] to produce the string xaAax.  
Application of production rules continues in the 
order of A[0],  B[1], C[1] until there are no 
nonterminals remaining in the string. The final 
genome consists of the sequence of rule 
applications {S, B[0], A[0],  B[1],  C[1]}.  Thus, the 
genome is a sequence of rule applications that forms 
a “set of instructions” for how an input string should 
be built.



mated to form the next generation of test inputs.  This 
process of input injection, execution path tracking, 
fitness evaluation, and mating continues until either a 
maximum number of generations are reached or the 
application has been forced into the acceptance state.  
Figure 5 provides pseudocode for our algorithm. 
GA - We implemented the genetic algorithm in 
Python.  The genomes are variable length integer 
strings, which we convert into input strings using 
grammatical evolution.  We use single point crossover; 
elitism; and insertion, deletion, and point mutations.  If 
progress in the control flow graph stagnates, the 
mutation rate dynamically increases until further 
progress is made.  
     We chose to use the PAIMEI framework because it 
provided most of the basic components we needed (e.g. 
scriptable debugging and support for control flow 
graph extraction) [14].  PAIMEI is written in Python 
and exposes functionality that includes a debugger, a 
graph based binary abstraction, and a set of utilities for 
accomplishing repetitive tasks. Python was also an 
ideal language for implementing the genetic algorithm, 
since it provides extensive built-in support for string 
manipulation.  PAIMEI has been used by software 
security researchers for a wide range of static and 
dynamic code analysis tasks like fuzzing, code 
coverage, and data flow tracking.  
 
4. Evaluation 
      
     In the following sections, we evaluate of our tool’s 
potential as a fuzzer.  For all of our tests, we tested our 
tool on the tftpd.exe Windows server program for 50 
runs and compared it to a random exploration [17].  
We ran the GA for 3,000 generations and the random 
exploration for equivalent to 10,000 generations worth 
of input data. Each generation consisted of 50 different 
test inputs. The context-free grammar we used to 
generate inputs consisted of hex bytes from 0 to 255 in 
addition to the mode strings “netascii”, “octet” and 
“mail”.  We included these strings because we knew 
them to be part of the tftp packet format and they 
appeared in the disassembly listing of program strings.  
Indeed, such strings are easily extracted from a binary 
program and could potentially provide a rich source for 
the automatic derivation of application specific 
grammar rules (clearly the GA will learn faster if it has 
more useful information in the grammar to generate its 
test inputs from).  The GA parameters we used in our 
experiments were: Mutation Rate = 90%, Crossover 
Rate = 75%, Elitism, Selective Breeding, and Dynamic 
Mutation. 
     Lastly, all of the following experiments were 
performed upon a desktop PC containing an Intel Core 
Duo 2 processor, 1 GB of memory, and the Windows 
XP Professional operating system.  Running times 

varied, depending upon the exact experiment and 
whether we were using the GA or the random search.  
None of the individual runs, however, took longer than 
a few hours to complete.  
 
4.1. Targeted Execution 
      
     Security researchers frequently encounter situations 
where they have analyzed and located a potentially 
exploitable location in a program that is dependent 
upon some user controlled input. An example might be 
a packet received over a network connection by an 
application that is subsequently sent into some API 
function known to be vulnerable to buffer overflows.  
Exploitability, however, also implies reachability. That 
is, in order to determine if the vulnerability is an 
exploitable threat, one must prove that it is reachable 
on the execution path given some user supplied input.  
The exact format of this input is dependent upon the 
control flow logic on the path between the packet 
acceptance and the basic block where the vulnerable 
API function is used. 
     In this section, we present an evaluation of our 
tool’s feasibility for the previously discussed scenario 
of determining the input structure needed to drive 
program execution into a potentially vulnerable state. 
We targeted two published vulnerabilities in the 
TFTPD server program [17].  These vulnerabilities 
exist in the packet parsing logic and are the result of 
improper bounds checking on strings passed into two 
strcpy() functions.  
     Our findings were twofold.  First, we showed that 
our genetic algorithm is capable of evolving tftp 
packets that successfully reach the basic blocks 
containing the vulnerable strcpy() functions in the 
control flow graph.  Tftpd.exe performs several checks 
and validations on a packet before it reaches these 
functions.  This demonstrates that our algorithm is 
capable of learning to navigate the program’s internal 
logic to reach these locations.  Second, we 
demonstrated the superiority of our approach to fuzzing 
with random input.  Figure 7 shows a control flow 
graph generated by our tool during one of our test runs.  
Figure 6 shows a comparison of the performance of the 
genetic algorithm to a random search.  The GA 
outperforms the random fuzzing approach.  The first 
vulnerable strcpy() function was reached by the GA in 
224 generations on average compared to a random 
search which took an equivalent of 2294 generations 
on average.  The GA’s superiority was more 
pronounced on the second strcpy() function situated 
deeper in the logic structure.  The GA reached it in an 
average 227 generations compared to 9,106 for the 
random brute force.  
 
4.2. Code Coverage Selectivity 



     While security researchers may want to target a 
specific vulnerability to discover whether or not it is 
exploitable, they also investigate the overall behavior 
of an application.  They do this by trying to cover as 
much of its code as possible.  In other words, they 
attempt to exercise as many different execution paths 
as possible.  This can reveal previously undiscovered 
bugs, or it can increase the developer’s confidence that 
the application is robust. 
 

 
 
   
 
 
 
     Many current code coverage tools are inadequate and 
inefficient for vulnerability analysis.  Many of these 
tools focus upon achieving global coverage of the 
application state space (i.e. reaching all nodes in its 
control flow graph).  Because all but the most trivial 
applications have extremely large state spaces, 
achieving such extensive coverage can be time 
consuming and resource intensive.  This may be 
justifiable for a software tester attempting to ensure the 
correctness or robustness of a mission critical 
application.  However, software security researchers 
may wish to focus their resources on the specific subsets 
of the state space most likely to be targeted by malicious 
users (e.g. a security analyst should examine parsing 
logic for a packet received off of an open port more 
closely than GUI code accepting mouse input.).  
Because our fitness function drives execution toward 
less explored regions within a subset of the overall 
control flow graph, code coverage is a natural extension.  
Rather than trying to achieve coverage of the entire state 
space, our tool focuses upon achieving coverage within 
localized program regions. This is a second area we 
evaluated our methodology.   
     During our investigation of the tftpd server’s strcpy() 
vulnerabilities, we collected code coverage data for the 
program region corresponding to the protocol parsing 

logic.  We compared the coverage obtained with input 
selection driven by our genetic algorithm against the 
coverage obtained by the random selection process.  
Averaged over 50 runs, the genetic algorithm achieved 
84.81% coverage of the region compared to 49.54% 
coverage achieved during the same number of inputs 
using the random selection.  Furthermore, coverage was 
not appreciably improved by continuing the random 
selection process for another 7000 generations worth of 
input data.  It slightly increased to 54.51%. We 
suspected that the natural tendency of our fitness 
function to drive exploration toward less explored 
regions of the graph would improve how quickly we 
were able to achieve specific penetration depths in the 
control logic structure.  The usage of elitism by our GA 
also ensured that we would never lose the information 
learned during previous generations.   
     In another experiment, we assigned a penetration 
depth value to each node corresponding to the minimum 
number of edges between it and the source node.  We 
then tabulated the average number of generations 
required to reach each depth in the control flow graph 
between the beginning and end of the tftp protocol 
parsing logic.  Figure 8 shows the results of this 
experiment.  As you can see, the GA once again 
outperforms a random search.  Its behavior is also more 
consistent.  We can also observe that nodes at greater 
depths ( > 10 edges ) become increasing difficult for the 
both the GA and the random search to reach. The 
increase in difficulty is, however, much more linear for 
the genetic algorithm. No doubt, this is a result of the 
natural tendency for the GA to leverage what it has 
learned from the previous observation of dynamic 
execution response to the inputs it has tried. Finally, we 
note that although we ran this experiment for input 
equivalent to 10,000 generations consisting of 50 trial 
inputs apiece, the random search never hit any of the 
nodes deeper than 13 edges away from the source.  
Thus, we should view the data points for these depths as 
setting a lower bound on the search  performance.  We 
expect that that performance will continue to 
exponentially increase with greater depths. 
 
4.3. Automatic Input Format Learning 
 
     Because many programs erroneously trust that user 
input will conform to well behaved published or  
implied standards, protocol parsing bugs abound.  
Protocol parsing code, furthermore, typically has a rich 
and deep control flow structure.  This makes it ideal for 
testing our genetic algorithm’s ability to explore the 
boundaries imposed by parsing logic on a program’s 
input space.  Once again, we applied it to the tftpd 
server program.  By setting the destination node to the  
basic block indicating acceptance of a valid read or 

Figure 6: Comparison between GA driven and 
random search of tftp packet parsing logic.  The 
node address corresponds to basic block 
addresses on paths from the beginning to the end 
of the packet parsing logic.   
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byte string 
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byte   
  Generation Opcode Filename 0 Mode 0   

1.  0   2326           
2.  1   626F637465741B7B6225         
3.  51   0005   367D         
4.  72   0002   36060628791E32         
5.  78   0002   36060128   00   0A2A3606     
6.  111   0001   NULL   00   0A057C0561     
7.  393   0002   187566   00   266F6374657464 00   
8.  547   0001   2E027D1C02006F63746574   00   6E6574617363696964 00   

 

Figure 9. Evolution of a TFTP Packet

1. Extract program control flow graph using pida_dump.py (provided in PAIMEI    
   framework 
2. Extract subgraph (source, destination) and set of reject nodes 
3. Load program & attach debugger 
4  Register breakpoint handler 
5. Set breakpoints on subgraph and reject node basic blocks 
6. Register exception handler 
7. Initialize GA parameters 
8. Initialize random population 
8. Inject input 
9. While destination node not yet reached: 
 a. When a breakpointed node is hit: 

i. Update code coverage information if this is the first time we've visited 
this node 

  ii.  Update the visit count for this node 
  iii. Add this node to the path taken by the current input 
  iv.  If (the node is a reject state) 

a. If (we have not yet ran all inputs in the population for the current 
generation) 

    i.  Inject next input 
    ii. Return 

b. Else we have ran all inputs in the population for the current 
generation: 

    i.   Calculate fitness 
    ii.  Build new population via crossover and mutation 
    iii. Inject new input 
    iv.  Return 
  v.   Else node is not a reject state: 
   i. Return 

Figure 5. Pseudocode for our prototype fuzz testing tool 

Figure 8. Average # of Generations for CFG Penetration Depth 



  
 

Figure 7. Graph generated by our research tool 
during exploration of the tftpd server program's 
protocol parsing logic.  White nodes correspond to 
nodes which exist on some path between the source 
and destination nodes.  Black nodes correspond to 
“reject” nodes (nodes from which it is no longer 
possible to reach the destination node). The labeled 
“source” node roughly corresponds to the start of the 
tftp server program’s protocol parse code and the 
labeled “target” node, to the code block indicating 
acceptance of the tftp packet structure.  Note that 2 
vulnerable strcpy() functions exist within this 
subgraph.  Both were hit during our GA driven 
search. 
 
write request packet, we were able to test the ability of 
our GA to learn a valid tftp packet structure.  The tftp 
packet header format is relatively simple.  The 
minimum header length is 4 bytes and it consists of the 
following fields:  
 
• Opcode – The protocol supports 5 opcodes ( 1=Read 

request, 2=Write request, 3=Data, 
4=Acknowledgement, 5=Error ). This is a 2 byte 
field. 

• Filename – A variable length ascii sequence. 
• Null Byte – Null byte following the filename. 
• Mode – Contains one of the three strings: “netascii”, 

“octet”, or “mail” in any combination of upper and 
lower case. 

• Null Byte – Null byte following the mode string. 
     As you can see in Figure 9, we track the evolution 
of our GA during the successful generation of a valid 

tftp packet.  The strings included in this figure 
represent the best genomes found by our GA at specific 
points during the evolutionary process. Note also that 
these strings are in hexadecimal.  Therefore a single 
byte consists of 2 hexadecimal digits. Because we have 
also manually reverse engineered the tftp protocol 
parsing logic, we know that the first check is 
performed on the length and that the packet parsing 
logic proceeds from left to right. We outline the 
evolutionary steps below: 
 
Generation 0: Consists of an initial population of 
random strings generated by the GA. The “best 
genome” evolved at the 0th generation (i.e. “2326”), 
failed to evolve a string capable of satisfying tftp’s first 
check for a minimum length string.   
Generation 1: Here, the grammar generated a longer 
string that was accepted and enabled the program to 
progress deeper into the parsing logic.  This longer 
string was rewarded by the GA with a better fitness 
and was allowed to reproduce more. 
Generation 51: We note that the GA has evolved its 
first valid opcode (remember valid opcodes range from 
1 to 5).  The “0005” corresponds to an “error”.  The 
remaining characters in the genome are interpreted as a 
filename string, however, the required null terminator 
is still missing. 
Generation 72: We can see that the GA has evolved a 
different, valid opcode (a write request).  It is still, 
however, missing the null terminator. 
Generation 78: The GA learns that a null terminator 
must follow the opcode and filename bytes.  At this 
point we have generated a packet with both a valid 
opcode and an acceptable null terminated filename. 
Generation 111: We evolve yet another valid opcode 
(read request == “0002”) and learn that it is valid for 
the filename to be a null string.  
Generation 393: We evolve a packet with an invalid 
mode string (the string is correctly null terminated, 
however, it represents an invalid mode). 
Generation 547: The genetic algorithm finds a valid 
packet structure with a opcode, filename, and mode 
strings, all in the right positions relative to each other. 

 
The evolutionary process outlined above is consistent 
with the process observed in all of our trial runs.  Our 
GA begins with no information about the packet 
structure, but over successive generations, it 
incrementally learns what an accepted tftp packet input 
looks like.  Typical running times were on the order of 
20-30 minutes.  If we allow our GA to continue 
running, it will quickly generate many unique packets 
conforming to a valid structure accepted by the tftp 
program.  By collecting enough of them, it may be 
possible for us to generate an approximate context-free 
grammar describing the tftp packet specification.   



  
5. Discussion & Limitations 
 
     Our technique is limited by the quantity of 
information embedded in the test program’s control 
flow graph structure.  This is due to the fact that we 
treat each node on the graph as a black box and judge 
fitness solely based upon runtime execution path 
information. In a sense, we are performing an 
"intelligent ", distributed brute force search for the 
constraints guarding the execution of each node in the 
control flow graph.  Rather than having to satisfy all of 
the constraints on a given path simultaneously as in a 
random fuzz, we are able to tackle them one at a time.  
Thus, it is most useful for code containing a rich, 
deeply nested control flow structure (e.g. like parser 
code) and will degenerate to a random bruteforce on 
flat control flow graphs.   
     Although an improvement over random input data 
generation, our technique still suffers from some of the 
weaknesses inherent to all black box tools. We are able 
to selectively test interesting regions of program logic 
and improve our rate of exploration over traditional 
black box tests, but we cannot guarantee that either a 
certain rate of coverage will occur or specific 
destination node will be reached.  While we have the 
capability to reduce the input search space, it can still 
remain quite large and perform poorly for constraints 
involving equality tests.  Equality tests are more suited 
"white box" fuzzer's constraint solver.  
     A closely related limitation concerns our extraction 
of the control flow graph information.  Because we 
rely upon a valid, static disassembly to obtain the 
control flow graph, we cannot apply our technique to 
programs that have been compressed, encrypted, or 
otherwise obfuscated.  We also may miss control flow 
information that is determined at runtime (e.g. runtime 
calculations of an index into a call table).  Though our 
initial results are promising, we need to perform 
additional tests to see how well our methodology will 
scale to larger programs and more complex protocols.  
Finally, the approach requires a human analyst to 
identify an initial source / destination pair describing 
the region of code to be tested.  In the future, this 
selection might be able to be partially automated (by 
suggesting regions around known vulnerable API 
functions, for example). 
     Some may argue that new "white box" fuzz testing 
tools will quickly render black box approaches 
obsolete.  We do not feel that is the case.  While 
automated "white box" testing tools theoretically have 
the ability to test all program paths, they suffer from 
practical limitations.  As a result, they are likely to 
retain a place in the software vulnerability testing 
process for quite some time to come. 
 

6. Related Work 
 
     A number of researchers have done work in the area 
of fuzz testing.   In the early 1990’s Barton Miller et al. 
[11] first presented the “fuzzing” concept by 
performing tests on UNIX applications with random 
inputs. [4] presented fuzz testing on Windows NT GUI 
based applications. Building upon Miller’s work, later 
researchers successfully applied fuzzing to other forms 
of input, like network protocols and popular file 
formats.  Random input injection has resulted in the 
discovery of subtle parsing errors leading to dangerous 
vulnerabilities. Unfortunately, black box fuzzers have 
difficulty achieving good code coverage and 
penetration depth into a program’s control flow logic.  
Later researchers reasoned that incorporating 
knowledge of the protocol into the input selection 
process might be more effective than supplying 
entirely random input.  Thus, the idea of using a 
partially specified or semi-random input structure 
emerged [8]. 
     Recently, “white box” fuzzers have emerged onto 
the automated vulnerability analysis scene.  Some of 
the early work in this area was performed by Cader et 
al. and published in the paper “EXE: Automatically 
Generating Inputs of Death” [CGP+06].  The white 
box fuzz testing approach involves symbolically 
running an application and solving constraints its 
control graph.  The generated constraints are then used 
to produce new inputs that enable the program to 
explore new paths.  The DART (Directed Automated 
Random Testing) and SAGE (Scalable, Automated, 
and Guided Execution) projects are also based upon 
this idea [6] [5].  In theory, such “white box fuzz 
testing” approaches seem hard to beat.  They are, 
however, constrained by some practical limitations [5]. 
These include path explosion, imperfect symbolic 
executions, and performance bottlenecks relating to the 
computational expense of constraint solving [5]. They 
are also substantially much more complex to develop.  
     There has also been research on the applications of 
evolutionary computation to the software testing 
domain. Cheon and Kim proposed a specification 
based fitness function for testing object oriented 
programs [1].  Khor and Grogono proposed using data 
dependency analysis to automatically generate branch 
coverage test data. [10].  Finally, Minn and Holcombe 
discussed the applications for the concept of 
“chaining” in the design of a genetic algorithm based 
test data generator [12].  Among these existing fitness 
functions, we believe our application of a Dynamic 
Markov Model heuristic to the problem of guided input 
selection is unique and potentially beneficial to the 
development of future automated vulnerability analysis 
tools. 
 



7. Conclusions & Future Work 
 
     In this paper, we have discussed a new black box 
fuzzing methodology based upon a dynamic Markov 
Model heuristic. Our experiments validated our 
approach.  We also demonstrated that this approach 
can be implemented as a plug in for a commonly used 
reverse engineering framework, run on an inexpensive 
platform in a very modest amount of time, and produce 
practical results on a commercial server application.  It 
consistently outperformed a random fuzzer, especially 
for greater control flow penetration depths.  Our 
research incorporates ideas from machine learning, 
statistical theory, static and dynamic software analysis, 
and reverse engineering. Because of this, it benefits 
from the synergy of a truly interdisciplinary approach 
and bridges a gap between theoretical and industrial 
security research. 
     There is still much to be done to practically and 
cost-effectively deploy our system. Also, it is possible 
to extend our work to other problem domains. Here, we 
list some possible extensions to this research: 

 
• Testing using other applications and protocols. 
• Automating grammar generation by deriving 

grammar production rules from the strings 
contained in a target binary. 

• Extending our approach to handle protocols with 
state information (for example, a handshake) 

• Because we can generate multiple, unique inputs 
capable of crashing the program, we could extend 
our tool for intrusion detection by creating 
signatures based on those inputs. 
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