
Automated Vulnerability Analysis:
Leveraging Control Flow for Evolutionary Input Crafting

Sherri Sparks, Shawn Embleton, Ryan Cunningham, Cliff Zou

University of Central Florida
{ssparks, embleton, czou}@cs.ucf.edu

Abstract

We present an extension of traditional "black box" fuzz
testing using a genetic algorithm based upon a
Dynamic Markov Model fitness heuristic. This
heuristic allows us to "intelligently" guide input
selection based upon feedback concerning the
"success" of past inputs that have been tried. Unlike
many software testing tools, our implementation is
strictly based upon binary code and does not require
that source code be available. Our evaluation on a
Windows server program shows that this approach is
superior to random black box fuzzing for increasing
code coverage and depth of penetration into program
control flow logic. As a result, the technique may be
beneficial to the development of future automated
vulnerability analysis tools.

1. Introduction

 As the number of households and businesses
owning personal computers continues to climb, data
and software security are becoming growing concerns.
According to the National Vulnerability Database, the
number of reported software vulnerabilities has risen
from 25 in 1995 to nearly 5000 in 2005 [13]. As a
result, there has been a great deal of commercial and
academic interest in developing automated software
security tools.
 Vulnerability analysis involves discovering a subset
of the input space with which a malicious user can
exploit logic errors in an application to drive it into an
insecure state. As software becomes larger and more
complex, exploring a commercial application’s entire
state space for exploitable vulnerabilities becomes an
intractable problem. To reduce the scope of
exploration, security researchers have developed a
number of testing techniques. White box testing, also
known as structural or glass box analysis, typically
involves detailed, manual analysis of either program
source code or a static1 disassembly. It is based upon

 This research was supported by NSF Grant CNS-0627318 and Intel
research funds.

the assumption that the tester has internal knowledge
of the system during the test case generation process.
In contrast, the black box or functional testing
methodology views a program as a “black box”. It
does not rely upon either source code or disassembly.
Rather, it is based upon injecting random or semi-
random external input into a program and then
monitoring its output for unexpected behavior. This
process is also sometimes referred to as fuzz testing or
fault injection [7]. Time and cost are motivating
factors in application security. Black box fuzzers have
become popular in recent years because they provide a
favorable cost / benefit ratio due to their simplicity and
potential for automation.
 What black box fuzzers lack, however, is input
selection based upon guided feedback concerning
progress within the program logic being tested. In
practice, security researchers frequently encounter
situations where they have analyzed and located a
potentially exploitable location in a program which is
dependent upon some user controlled input. An
example might be a packet received over a network
connection by an application that is subsequently sent
into some API function known to be vulnerable to
buffer overflows. Exploitability, however, also implies
reachability. That is, in order to determine if the
vulnerability is an exploitable threat, one must prove
that it is reachable on the execution path given some
user supplied input. The exact format of this input is
dependent upon the control flow logic on the path
between the packet acceptance and the basic block
where the vulnerable API function is used. Figure 1
provides a graphical illustration of this idea.
 Ideally, a fuzzer should have some basic
“intelligence” that allows it to preferentially drive
execution through any input dependent parse logic to a
suspected vulnerable location. We feel that a genetic
algorithm is well suited to this task. This was
motivated by several observations:
• The runtime execution trace of a program is

dependent upon both its user supplied input and the
static structural characteristics of its control flow
graph. Therefore, if a given input makes it closer to a
region of the control flow graph that we wish to

Figure 1. An idealized diagram of the input crafting
problem (i.e. what input will cause the program to
exercise the control flow logic on the path from the
recv function to a potentially vulnerable strcpy()?)

explore than some other input, it may have some
desirable characteristics which make it capable of
satisfying some (if not all) of the logical constraints
on that path. Thus some “invalid” inputs may be
better than other “invalid” inputs.

• If we somehow combine or “breed” the best of the
invalid inputs we’ve found in the past, we may select
for those characteristics in the future which
maximize the number of constraints we are able to
satisfy on the execution path and thus increase our
overall exploration of the program state space. This
is the “survival of the fittest” axiom.

 The essential contribution of this paper is threefold.
First, we extend traditional "black box" fuzz testing
using a genetic algorithm based upon a Dynamic
Markov Model fitness heuristic. This heuristic allows
us to "intelligently" guide input selection using a
genetic algorithm based upon dynamic feedback
concerning the "success" of past inputs that have been
tried.
 Second, we build upon the idea of using a partially
specified input structure. The input structure is
specified via a context-free grammar and "evolved"
using grammatical evolution [16].
 Lastly, we focus upon implementing a practical,
prototype using existing tools and technologies. We
used the open source PAIMEI reverse engineering
framework to construct a source code independent
testing tool [14]. Thus, our prototype can be easily
extended and implemented by others. Our intelligent
fuzz testing tool provides focused code coverage and
targeted execution control by driving program
execution to selective regions of interest in the code
(which are suspected to contain vulnerabilities or
bugs). Unlike many existing tools, our implementation
doesn’t require source code. Thus our prototype can
be readily used to analyze commodity software.

Finally, a grammar frees us from being bound to a
particular protocol. If the user wishes to fuzz a new
protocol, all he or she has to do is replace the grammar
file.
 The paper organization is summarized as follows:
Section 2 discusses our methodology with
implementation specifics covered in Section 3.
Experimental evaluations are discussed in section 4.
Section 5 follows with an analysis of the limitations of
our technique. Related work is discussed in section 6.
Finally, in section 7 we conclude with a few ideas for
future work.

2. Methodology

 In this section, we describe an intelligent black box
fuzz testing methodology capable of crafting inputs
which force an application to execute specific
dependent portions of its control flow graph (see
Figure 1). The ability to selectively drive exploration
of an application’s state space is useful for a fuzz
testing tool when the vulnerability analyst wishes to
focus testing on a specific portion of a program’s
control flow graph or “drill down” to a specific node
suspected of containing a vulnerability. Clearly a
binary response indicating whether a given input
reaches the destination state or not is insufficient. We
require a smoothed projection of the search space,
where some inputs are more nearly correct than others.
We use the control flow graph of an application to
create such a fuzzy search space.

2.1. Modeling Dynamic Control Flow as a
Markov Process

 A control flow graph for an executable program is a
directed graph with nodes corresponding to blocks of
sequential instructions and edges corresponding to
non-sequential instructions that join basic blocks (i.e.
conditional branch instructions.) A control flow graph
for a binary executable can be obtained using a
disassembly engine, such as IDA Pro [9].
 If we treat the transition behavior of an arbitrary
input at a particular basic block in the control flow
graph as an estimated parameter, we can develop a
probabilistic model called an absorbing Markov
process for input behavior from the control flow graph.
A Markov process is a type of stochastic process in
which the outcome of a given trial depends only on the
current state of the process [15]. A system consisting
of a series of Markov events is called a Markov chain.
If certain outcomes in the Markov chain loop directly
back to any state with absolute certainty, it is called an
absorbing Markov chain [15]. The edge probabilities
for our Markov process correspond to the probability a

recv

strcpy

random input will take a given state transition in the
control flow graph. As we are only interested in
estimating the probabilities along paths which lead to a
desired state, we treat all transitions leading off of the
subgraph consisting of these paths as transitioning to a
common absorbing state, which we call the rejection
state. Any program behavior made after reaching the
target state can also be ignored, so we treat this node in
the control flow graph as an absorbing state as well and
call it the acceptance state. Figure 2 illustrates this
idea.
 Rather than determining the absolute probability
values for these transitions, we try to estimate them by
considering each input tested as a biased statistical
sample of this Markov model. The solution space is
therefore simply the probability of an input taking a
particular execution path in the sampled Markov
process. The estimated probability of following a
given execution path is therefore:

i

i
i bb

trp =

Where tri is the total number of inputs that have taken
edge transition i , and bbi is the total number of inputs
which have reached the block containing the
conditional statement for edge transition i .

2.2. Searching the Input Space with a Genetic
Algorithm

 Evolutionary computation is a field of machine
learning which attempts to mimic the process of
evolution to derive solutions for a certain task [3].
Genetic algorithms are evolutionary algorithms that
function as stochastic global optimizers. A genome in
a genetic algorithm represents one potential solution
(e.g. for a problem requiring a string input, the string
would be a genome). Genetic algorithms operate
iteratively on populations of genomes. Each iteration
is called a generation. In each generation, all of the
genomes in the population are evaluated by a fitness
function. The fitness function measures their
suitability within their environment. The genomes
which score the highest fitness are then selected for
crossover. Crossover can be likened to biological
breeding. It is a mechanism that allows useful
genomes to be combined to produce newer and
hopefully more fit genomes. Less fit genomes are
simply discarded. This mimics the process of natural
selection. Finally, to widely explore the solution
space, certain genomes in the population are mutated.
Mutation makes a random change within a genome
(e.g. bit flip, swapping of bytes, ect).

 The genomes in our genetic algorithm
implementation correspond to individual inputs for the
application. We build each input string from a variable
length integer genome using a user-specified context-
free grammar and grammatical evolution [2]. The
fitness of each genome is the inverse of its execution
path’s estimated probability derived from the estimated
Markov process probabilities on the control flow
graph.

Fitness
∏

=

l
ip

x 1)(

 Where l is the length of the execution path for input
x on the control flow graph, and pi corresponds to the
estimated probability of taking edge i in the control
flow graph. Because our fitness function depends on
the behavior of all of the other genomes in a
generation, it is necessary to compute the fitness value
for a particular generation of genomes, we first find the
execution path for all members of the population and
update the transition probabilities of the Markov chain.
We then find the probability of each genome’s
execution path using the updated dynamic Markov
model.
 Because the genetic algorithm is attempting to
create strings that will follow the least probable

A

B C

G

F D E

H I J K

L M N

.25 .75

1 .9 .1
.5

.5 .33.67 .4 .6

1 1 1.8.2

Figure 2. Markov probabilities associated with
state transitions on a control flow graph. The
white and black squares represent nodes on a
control flow path from a given source node (A) to a
destination node (M). The grey squares represent
reject nodes (nodes from which it is no longer
possible to reach the destination node (M)). The
black squares represent the path taken by an
arbitrary input through the control flow logic. This
path consists of node transitions
A→C→E→D→G→M. We can calculate the fitness
of this input by multiplying the edge transition
probabilities:

Fitness = 1 / (.75 × .9 × .5 × .67 × .8) = 5.525

execution paths, it will bias our sampling. While this
may at first seem to be a disadvantage, it is actually an
advantage. The resulting fitness function calculation is
actually the probability the genetic algorithm has
produced a string which followed a given execution
path. This will reward those genomes in the
population that represent input that that takes
previously unexplored execution paths as well as rare
(i.e. difficult) execution paths.

2.3. Grammatical Evolution

 Grammatical evolution is a special type of genetic
algorithm that can evolve strings in an arbitrary
context-free language [2]. Rather than directly
encoding the resulting string in its genome, the genome
encodes production rules to produce a string from a
specified context-free grammar. Each genome is a
variable length integer string. The algorithm used to
produce a string from the grammar using a genome is
summarized in Figure 3. Figure 4 illustrates the
construction of a genome from a context-free grammar
via grammatical evolution.

 Because the input space for the program represents
the search space for our program, its combinatorial
nature makes blindly generating variable length binary
input in a linear genome (as is usual in genetic
algorithms) inefficient. Rather than using the usual
representation, our genomes represent instructions for
building the input from a user-specified context-free
grammar, following the Grammatical Evolution
paradigm. This not only gives the user the ability to
narrow the search space based on knowledge of their
specific application, it also gives the genetic algorithm
flexibility to represent input with similar structural
characteristics as being more nearly adjacent in the
search space (e.g. Creating matching HTML tags in a
variable
length linear genome would require four insertion
mutations for each bracket character and one mutation
for the slash character that all happen to occur in the
right position, but with the correct grammar,
grammatical evolution would require just one insertion

mutation that added the tag generation production rule
to the genome).

 3. Implementation

 In order to implement our approach as a practical
tool, we needed to address several requirements:

Disassembly And Control Flow Graph Extraction:
The control flow graph used in our methodology is
actually a subgraph of the overall program control flow
graph. It consists of all basic blocks on a path between
an input block and a desired acceptance (i.e.
destination) block. All edges leading to blocks off this
subgraph are assigned to a special rejection set.
Custom Debugger: We use a debugger for lightweight
basic block level binary instrumentation. This is
necessary for us to track the runtime execution path
and gather the statistics necessary for the genetic
algorithm to rate the fitness of individual inputs.
Specifically, we set breakpoints in the test application
on the entry points of all nodes in the control flow
subgraph and rejection set. We then run the test
application successively on a randomly supplied
population of inputs. In the breakpoint handler, we
track the execution path up to the point where the
execution path reaches a rejection node (i.e. the
destination is no longer reachable along all subsequent
execution paths) or terminates in success. At this
point, we calculate the fitness for the input
probabilistically using the previously discussed
Markov Chain heuristic. The fittest individuals are

Figure 3. Pseudocode for grammatical evolution.

while (nonterminals in the string)
{
 find first nonterminal
 numRules = number of production
 rules for the
 nonterminal
 i = next integer in the genome %
 numRules
 apply production rule i
}

 0 1 2
S sAs | xBx | m
A bBb | B
B aAa | C | AB
C C | d | e

 1 0 0
S xBx xaAax xabBbax
 1 1
 xabCbax xabdbax

Figure 4. Construction of a genome from a context-
free grammar. Construction begins with the initial
rule S. The application of production rule S[1]
results in the new string xBx. The nonterminal B is
then replaced by B[0] to produce the string xaAax.
Application of production rules continues in the
order of A[0], B[1], C[1] until there are no
nonterminals remaining in the string. The final
genome consists of the sequence of rule
applications {S, B[0], A[0], B[1], C[1]}. Thus, the
genome is a sequence of rule applications that forms
a “set of instructions” for how an input string should
be built.

mated to form the next generation of test inputs. This
process of input injection, execution path tracking,
fitness evaluation, and mating continues until either a
maximum number of generations are reached or the
application has been forced into the acceptance state.
Figure 5 provides pseudocode for our algorithm.
GA - We implemented the genetic algorithm in
Python. The genomes are variable length integer
strings, which we convert into input strings using
grammatical evolution. We use single point crossover;
elitism; and insertion, deletion, and point mutations. If
progress in the control flow graph stagnates, the
mutation rate dynamically increases until further
progress is made.
 We chose to use the PAIMEI framework because it
provided most of the basic components we needed (e.g.
scriptable debugging and support for control flow
graph extraction) [14]. PAIMEI is written in Python
and exposes functionality that includes a debugger, a
graph based binary abstraction, and a set of utilities for
accomplishing repetitive tasks. Python was also an
ideal language for implementing the genetic algorithm,
since it provides extensive built-in support for string
manipulation. PAIMEI has been used by software
security researchers for a wide range of static and
dynamic code analysis tasks like fuzzing, code
coverage, and data flow tracking.

4. Evaluation

 In the following sections, we evaluate of our tool’s
potential as a fuzzer. For all of our tests, we tested our
tool on the tftpd.exe Windows server program for 50
runs and compared it to a random exploration [17].
We ran the GA for 3,000 generations and the random
exploration for equivalent to 10,000 generations worth
of input data. Each generation consisted of 50 different
test inputs. The context-free grammar we used to
generate inputs consisted of hex bytes from 0 to 255 in
addition to the mode strings “netascii”, “octet” and
“mail”. We included these strings because we knew
them to be part of the tftp packet format and they
appeared in the disassembly listing of program strings.
Indeed, such strings are easily extracted from a binary
program and could potentially provide a rich source for
the automatic derivation of application specific
grammar rules (clearly the GA will learn faster if it has
more useful information in the grammar to generate its
test inputs from). The GA parameters we used in our
experiments were: Mutation Rate = 90%, Crossover
Rate = 75%, Elitism, Selective Breeding, and Dynamic
Mutation.
 Lastly, all of the following experiments were
performed upon a desktop PC containing an Intel Core
Duo 2 processor, 1 GB of memory, and the Windows
XP Professional operating system. Running times

varied, depending upon the exact experiment and
whether we were using the GA or the random search.
None of the individual runs, however, took longer than
a few hours to complete.

4.1. Targeted Execution

 Security researchers frequently encounter situations
where they have analyzed and located a potentially
exploitable location in a program that is dependent
upon some user controlled input. An example might be
a packet received over a network connection by an
application that is subsequently sent into some API
function known to be vulnerable to buffer overflows.
Exploitability, however, also implies reachability. That
is, in order to determine if the vulnerability is an
exploitable threat, one must prove that it is reachable
on the execution path given some user supplied input.
The exact format of this input is dependent upon the
control flow logic on the path between the packet
acceptance and the basic block where the vulnerable
API function is used.
 In this section, we present an evaluation of our
tool’s feasibility for the previously discussed scenario
of determining the input structure needed to drive
program execution into a potentially vulnerable state.
We targeted two published vulnerabilities in the
TFTPD server program [17]. These vulnerabilities
exist in the packet parsing logic and are the result of
improper bounds checking on strings passed into two
strcpy() functions.
 Our findings were twofold. First, we showed that
our genetic algorithm is capable of evolving tftp
packets that successfully reach the basic blocks
containing the vulnerable strcpy() functions in the
control flow graph. Tftpd.exe performs several checks
and validations on a packet before it reaches these
functions. This demonstrates that our algorithm is
capable of learning to navigate the program’s internal
logic to reach these locations. Second, we
demonstrated the superiority of our approach to fuzzing
with random input. Figure 7 shows a control flow
graph generated by our tool during one of our test runs.
Figure 6 shows a comparison of the performance of the
genetic algorithm to a random search. The GA
outperforms the random fuzzing approach. The first
vulnerable strcpy() function was reached by the GA in
224 generations on average compared to a random
search which took an equivalent of 2294 generations
on average. The GA’s superiority was more
pronounced on the second strcpy() function situated
deeper in the logic structure. The GA reached it in an
average 227 generations compared to 9,106 for the
random brute force.

4.2. Code Coverage Selectivity

 While security researchers may want to target a
specific vulnerability to discover whether or not it is
exploitable, they also investigate the overall behavior
of an application. They do this by trying to cover as
much of its code as possible. In other words, they
attempt to exercise as many different execution paths
as possible. This can reveal previously undiscovered
bugs, or it can increase the developer’s confidence that
the application is robust.

 Many current code coverage tools are inadequate and
inefficient for vulnerability analysis. Many of these
tools focus upon achieving global coverage of the
application state space (i.e. reaching all nodes in its
control flow graph). Because all but the most trivial
applications have extremely large state spaces,
achieving such extensive coverage can be time
consuming and resource intensive. This may be
justifiable for a software tester attempting to ensure the
correctness or robustness of a mission critical
application. However, software security researchers
may wish to focus their resources on the specific subsets
of the state space most likely to be targeted by malicious
users (e.g. a security analyst should examine parsing
logic for a packet received off of an open port more
closely than GUI code accepting mouse input.).
Because our fitness function drives execution toward
less explored regions within a subset of the overall
control flow graph, code coverage is a natural extension.
Rather than trying to achieve coverage of the entire state
space, our tool focuses upon achieving coverage within
localized program regions. This is a second area we
evaluated our methodology.
 During our investigation of the tftpd server’s strcpy()
vulnerabilities, we collected code coverage data for the
program region corresponding to the protocol parsing

logic. We compared the coverage obtained with input
selection driven by our genetic algorithm against the
coverage obtained by the random selection process.
Averaged over 50 runs, the genetic algorithm achieved
84.81% coverage of the region compared to 49.54%
coverage achieved during the same number of inputs
using the random selection. Furthermore, coverage was
not appreciably improved by continuing the random
selection process for another 7000 generations worth of
input data. It slightly increased to 54.51%. We
suspected that the natural tendency of our fitness
function to drive exploration toward less explored
regions of the graph would improve how quickly we
were able to achieve specific penetration depths in the
control logic structure. The usage of elitism by our GA
also ensured that we would never lose the information
learned during previous generations.
 In another experiment, we assigned a penetration
depth value to each node corresponding to the minimum
number of edges between it and the source node. We
then tabulated the average number of generations
required to reach each depth in the control flow graph
between the beginning and end of the tftp protocol
parsing logic. Figure 8 shows the results of this
experiment. As you can see, the GA once again
outperforms a random search. Its behavior is also more
consistent. We can also observe that nodes at greater
depths (> 10 edges) become increasing difficult for the
both the GA and the random search to reach. The
increase in difficulty is, however, much more linear for
the genetic algorithm. No doubt, this is a result of the
natural tendency for the GA to leverage what it has
learned from the previous observation of dynamic
execution response to the inputs it has tried. Finally, we
note that although we ran this experiment for input
equivalent to 10,000 generations consisting of 50 trial
inputs apiece, the random search never hit any of the
nodes deeper than 13 edges away from the source.
Thus, we should view the data points for these depths as
setting a lower bound on the search performance. We
expect that that performance will continue to
exponentially increase with greater depths.

4.3. Automatic Input Format Learning

 Because many programs erroneously trust that user
input will conform to well behaved published or
implied standards, protocol parsing bugs abound.
Protocol parsing code, furthermore, typically has a rich
and deep control flow structure. This makes it ideal for
testing our genetic algorithm’s ability to explore the
boundaries imposed by parsing logic on a program’s
input space. Once again, we applied it to the tftpd
server program. By setting the destination node to the
basic block indicating acceptance of a valid read or

Figure 6: Comparison between GA driven and
random search of tftp packet parsing logic. The
node address corresponds to basic block
addresses on paths from the beginning to the end
of the packet parsing logic.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth

Ti
m

e
(g

en
er

at
io

ns
)

GA Search Random Search

 2 bytes string
1

byte string
 1

byte
 Generation Opcode Filename 0 Mode 0

1. 0 2326
2. 1 626F637465741B7B6225
3. 51 0005 367D
4. 72 0002 36060628791E32
5. 78 0002 36060128 00 0A2A3606
6. 111 0001 NULL 00 0A057C0561
7. 393 0002 187566 00 266F6374657464 00
8. 547 0001 2E027D1C02006F63746574 00 6E6574617363696964 00

Figure 9. Evolution of a TFTP Packet

1. Extract program control flow graph using pida_dump.py (provided in PAIMEI
 framework
2. Extract subgraph (source, destination) and set of reject nodes
3. Load program & attach debugger
4 Register breakpoint handler
5. Set breakpoints on subgraph and reject node basic blocks
6. Register exception handler
7. Initialize GA parameters
8. Initialize random population
8. Inject input
9. While destination node not yet reached:
 a. When a breakpointed node is hit:

i. Update code coverage information if this is the first time we've visited
this node

 ii. Update the visit count for this node
 iii. Add this node to the path taken by the current input
 iv. If (the node is a reject state)

a. If (we have not yet ran all inputs in the population for the current
generation)

 i. Inject next input
 ii. Return

b. Else we have ran all inputs in the population for the current
generation:

 i. Calculate fitness
 ii. Build new population via crossover and mutation
 iii. Inject new input
 iv. Return
 v. Else node is not a reject state:
 i. Return

Figure 5. Pseudocode for our prototype fuzz testing tool

Figure 8. Average # of Generations for CFG Penetration Depth

Figure 7. Graph generated by our research tool
during exploration of the tftpd server program's
protocol parsing logic. White nodes correspond to
nodes which exist on some path between the source
and destination nodes. Black nodes correspond to
“reject” nodes (nodes from which it is no longer
possible to reach the destination node). The labeled
“source” node roughly corresponds to the start of the
tftp server program’s protocol parse code and the
labeled “target” node, to the code block indicating
acceptance of the tftp packet structure. Note that 2
vulnerable strcpy() functions exist within this
subgraph. Both were hit during our GA driven
search.

write request packet, we were able to test the ability of
our GA to learn a valid tftp packet structure. The tftp
packet header format is relatively simple. The
minimum header length is 4 bytes and it consists of the
following fields:

• Opcode – The protocol supports 5 opcodes (1=Read

request, 2=Write request, 3=Data,
4=Acknowledgement, 5=Error). This is a 2 byte
field.

• Filename – A variable length ascii sequence.
• Null Byte – Null byte following the filename.
• Mode – Contains one of the three strings: “netascii”,

“octet”, or “mail” in any combination of upper and
lower case.

• Null Byte – Null byte following the mode string.
 As you can see in Figure 9, we track the evolution
of our GA during the successful generation of a valid

tftp packet. The strings included in this figure
represent the best genomes found by our GA at specific
points during the evolutionary process. Note also that
these strings are in hexadecimal. Therefore a single
byte consists of 2 hexadecimal digits. Because we have
also manually reverse engineered the tftp protocol
parsing logic, we know that the first check is
performed on the length and that the packet parsing
logic proceeds from left to right. We outline the
evolutionary steps below:

Generation 0: Consists of an initial population of
random strings generated by the GA. The “best
genome” evolved at the 0th generation (i.e. “2326”),
failed to evolve a string capable of satisfying tftp’s first
check for a minimum length string.
Generation 1: Here, the grammar generated a longer
string that was accepted and enabled the program to
progress deeper into the parsing logic. This longer
string was rewarded by the GA with a better fitness
and was allowed to reproduce more.
Generation 51: We note that the GA has evolved its
first valid opcode (remember valid opcodes range from
1 to 5). The “0005” corresponds to an “error”. The
remaining characters in the genome are interpreted as a
filename string, however, the required null terminator
is still missing.
Generation 72: We can see that the GA has evolved a
different, valid opcode (a write request). It is still,
however, missing the null terminator.
Generation 78: The GA learns that a null terminator
must follow the opcode and filename bytes. At this
point we have generated a packet with both a valid
opcode and an acceptable null terminated filename.
Generation 111: We evolve yet another valid opcode
(read request == “0002”) and learn that it is valid for
the filename to be a null string.
Generation 393: We evolve a packet with an invalid
mode string (the string is correctly null terminated,
however, it represents an invalid mode).
Generation 547: The genetic algorithm finds a valid
packet structure with a opcode, filename, and mode
strings, all in the right positions relative to each other.

The evolutionary process outlined above is consistent
with the process observed in all of our trial runs. Our
GA begins with no information about the packet
structure, but over successive generations, it
incrementally learns what an accepted tftp packet input
looks like. Typical running times were on the order of
20-30 minutes. If we allow our GA to continue
running, it will quickly generate many unique packets
conforming to a valid structure accepted by the tftp
program. By collecting enough of them, it may be
possible for us to generate an approximate context-free
grammar describing the tftp packet specification.

5. Discussion & Limitations

 Our technique is limited by the quantity of
information embedded in the test program’s control
flow graph structure. This is due to the fact that we
treat each node on the graph as a black box and judge
fitness solely based upon runtime execution path
information. In a sense, we are performing an
"intelligent ", distributed brute force search for the
constraints guarding the execution of each node in the
control flow graph. Rather than having to satisfy all of
the constraints on a given path simultaneously as in a
random fuzz, we are able to tackle them one at a time.
Thus, it is most useful for code containing a rich,
deeply nested control flow structure (e.g. like parser
code) and will degenerate to a random bruteforce on
flat control flow graphs.
 Although an improvement over random input data
generation, our technique still suffers from some of the
weaknesses inherent to all black box tools. We are able
to selectively test interesting regions of program logic
and improve our rate of exploration over traditional
black box tests, but we cannot guarantee that either a
certain rate of coverage will occur or specific
destination node will be reached. While we have the
capability to reduce the input search space, it can still
remain quite large and perform poorly for constraints
involving equality tests. Equality tests are more suited
"white box" fuzzer's constraint solver.
 A closely related limitation concerns our extraction
of the control flow graph information. Because we
rely upon a valid, static disassembly to obtain the
control flow graph, we cannot apply our technique to
programs that have been compressed, encrypted, or
otherwise obfuscated. We also may miss control flow
information that is determined at runtime (e.g. runtime
calculations of an index into a call table). Though our
initial results are promising, we need to perform
additional tests to see how well our methodology will
scale to larger programs and more complex protocols.
Finally, the approach requires a human analyst to
identify an initial source / destination pair describing
the region of code to be tested. In the future, this
selection might be able to be partially automated (by
suggesting regions around known vulnerable API
functions, for example).
 Some may argue that new "white box" fuzz testing
tools will quickly render black box approaches
obsolete. We do not feel that is the case. While
automated "white box" testing tools theoretically have
the ability to test all program paths, they suffer from
practical limitations. As a result, they are likely to
retain a place in the software vulnerability testing
process for quite some time to come.

6. Related Work

 A number of researchers have done work in the area
of fuzz testing. In the early 1990’s Barton Miller et al.
[11] first presented the “fuzzing” concept by
performing tests on UNIX applications with random
inputs. [4] presented fuzz testing on Windows NT GUI
based applications. Building upon Miller’s work, later
researchers successfully applied fuzzing to other forms
of input, like network protocols and popular file
formats. Random input injection has resulted in the
discovery of subtle parsing errors leading to dangerous
vulnerabilities. Unfortunately, black box fuzzers have
difficulty achieving good code coverage and
penetration depth into a program’s control flow logic.
Later researchers reasoned that incorporating
knowledge of the protocol into the input selection
process might be more effective than supplying
entirely random input. Thus, the idea of using a
partially specified or semi-random input structure
emerged [8].
 Recently, “white box” fuzzers have emerged onto
the automated vulnerability analysis scene. Some of
the early work in this area was performed by Cader et
al. and published in the paper “EXE: Automatically
Generating Inputs of Death” [CGP+06]. The white
box fuzz testing approach involves symbolically
running an application and solving constraints its
control graph. The generated constraints are then used
to produce new inputs that enable the program to
explore new paths. The DART (Directed Automated
Random Testing) and SAGE (Scalable, Automated,
and Guided Execution) projects are also based upon
this idea [6] [5]. In theory, such “white box fuzz
testing” approaches seem hard to beat. They are,
however, constrained by some practical limitations [5].
These include path explosion, imperfect symbolic
executions, and performance bottlenecks relating to the
computational expense of constraint solving [5]. They
are also substantially much more complex to develop.
 There has also been research on the applications of
evolutionary computation to the software testing
domain. Cheon and Kim proposed a specification
based fitness function for testing object oriented
programs [1]. Khor and Grogono proposed using data
dependency analysis to automatically generate branch
coverage test data. [10]. Finally, Minn and Holcombe
discussed the applications for the concept of
“chaining” in the design of a genetic algorithm based
test data generator [12]. Among these existing fitness
functions, we believe our application of a Dynamic
Markov Model heuristic to the problem of guided input
selection is unique and potentially beneficial to the
development of future automated vulnerability analysis
tools.

7. Conclusions & Future Work

 In this paper, we have discussed a new black box
fuzzing methodology based upon a dynamic Markov
Model heuristic. Our experiments validated our
approach. We also demonstrated that this approach
can be implemented as a plug in for a commonly used
reverse engineering framework, run on an inexpensive
platform in a very modest amount of time, and produce
practical results on a commercial server application. It
consistently outperformed a random fuzzer, especially
for greater control flow penetration depths. Our
research incorporates ideas from machine learning,
statistical theory, static and dynamic software analysis,
and reverse engineering. Because of this, it benefits
from the synergy of a truly interdisciplinary approach
and bridges a gap between theoretical and industrial
security research.
 There is still much to be done to practically and
cost-effectively deploy our system. Also, it is possible
to extend our work to other problem domains. Here, we
list some possible extensions to this research:

• Testing using other applications and protocols.
• Automating grammar generation by deriving

grammar production rules from the strings
contained in a target binary.

• Extending our approach to handle protocols with
state information (for example, a handshake)

• Because we can generate multiple, unique inputs
capable of crashing the program, we could extend
our tool for intrusion detection by creating
signatures based on those inputs.

7. References

[1] Y. Cheon and M. Kim. A specication-based fitness

function for evolutionary testing of object oriented
programs. Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pp. 1953-1954,
2006.

[2] R.C. Collins and J.J. O'Neill. Grammatical Evolution:

Evolving Programs for an Arbitrary Language. Lecture
Notes in Computer Science 1391. First European
Workshop on Genetic Programming, 1998.

[3] A. Ethem. Introduction to Machine Learning. Boston,

Mass.:MIT Press, 2004.

[4] J.E. Forrester and B.P. Miller, An Empirical Study of the

Robustness of Windows NT Applications Using Random
Testing. 4th USENIX Windows Systems Symposium,
Seattle, August 2000.

[5] P. Godefroid, M. Levin, D. Molnar. 2007. Automated

Whitebox Fuzz Testing. Technical Report:

Microsoft Research, May 2007.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

Automated Random Testing. In Proceedingsof
PLDI’2005 (ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation),
pages 213–223, Chicago, June 2005.

[7] Hoglund, G., and McGraw, G. 2004. Exploiting Software:

How to Break Code. Boston, Mass.:Addison-Wesley.

[8] A. Helin, J. Viide, M. Laakso, J. Röning. Model Inference

Guided Random Testing of Programs with Complex
Input Domains. 2006.

[9] IDA Pro. Web page: http://www.datarescue.com/

[10] S. Khor and P. Grogono. Using a genetic algorithm and

formal concept analysis to generate branch coverage
test data automatically. Automated Software
Engineering, 2004. Proceedings. 19th International
Conference on, pages 346-349, 2004.

[11] B.P. Miller, L. Fredriksen, and B. So. An Empirical

Study of the Reliability of UNIX Utilities.
Communications of the ACM 33, 12 (December 1990).

[12] P. McMinn and M. Holcombe. Evolutionary testing of

state-based programs. Proceedings of the 2005
conference on Genetic and evolutionary computation,
pp. 1013-1020, 2005.

[13] Nist. Web page: http://nvd.nist.gov/

[14] Pedram A. PaiMei - Reverse Engineering Framework,

RECON Conference 2006.

[15] Markov chain. Web page: http://en.wikipedia.org/

wiki/Markov_chain

[16] C. Ryan, J.J. Collins, M. O'Neill. Grammatical

Evolution. Evolving Programs for an Arbitrary
Language. Lecture Notes in Computer Science 1391.
First European Workshop on Genetic Programming
1998.

[17] Wikipedia. Trivial File Transfer Protocol. Web page:

http://en.wikipedia.org/wiki/Tftp

