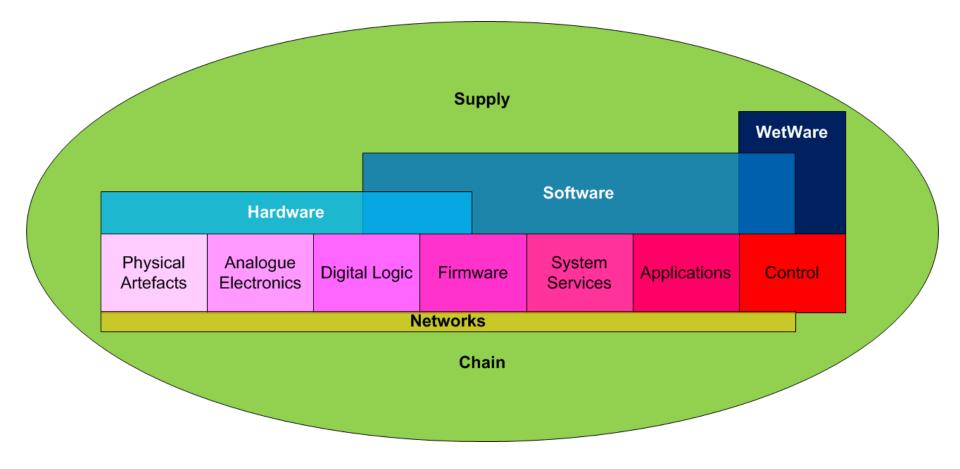
Software Security, Dependability and Resilience Initiative (S S D R I)

Case Study: Treating Challenges in Software Trustability

Ian Bryant Technical Director SSDRI

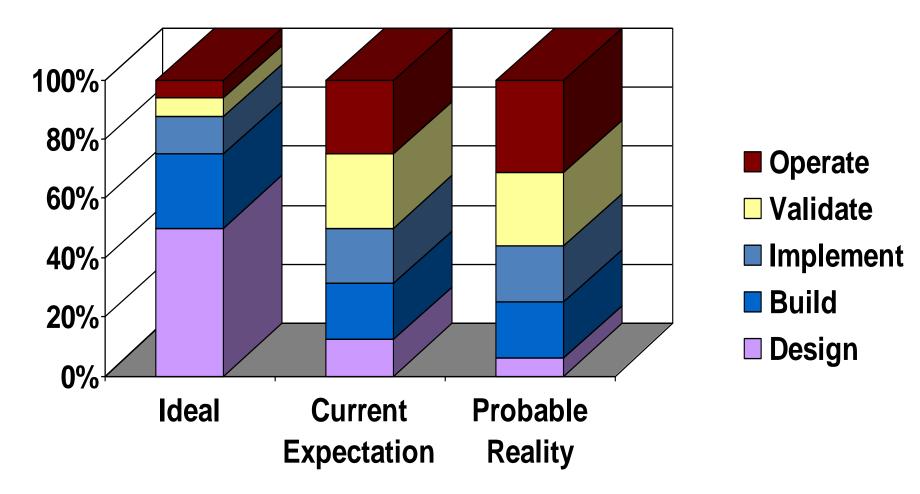

[DMU/CSC/SSDR/2011/142 | v1.1 | 20111207]

ACSA Conference 2012 (ACSAC) Orlando FL US 7 December 2011

Software and Wider ICT Context

Software Defects

- Software problems are high cost to economy:
 - US Government National Institute of Standards & Technology (NIST) ~\$60 billion / year to US alone
 - No definitive figure for UK / worldwide
- Software a major source of IT project failure:
 - University of Oxford Saïd Business School / McKinsey 2011
 - ESSU (European Services Strategy Unit) 2007
 - Tata Consultancy 2007
 - Standish Chaos Reports 2004 onwards
 - Rand 2004


Malicious Software

- Malicious Software (MalWare) ecosystem
- Ever increasing number of MalWare strains has challenges for reactive mitigation approaches (analysis workload and host performance)
- ICT marketplace is evolving in ways that will seem a proliferation of new types of platforms and software, increasing potential attack surface
- Software supply base broadening to those with little knowledge of good development practices

Software Composition

Segment	Embedded Systems	SCADA Systems	Communications Systems	IT Infrastructure	IT Applications
Reuse	Limited	Libraries	Libraries; Mobile Code	Libraries; Mobile Code; Cloud Services	Libraries; Mobile Code; Cloud Services; Mashups
	•		Trusted Supply Chain Required		

Context: Effort Imbalance

Software Development

- Underlying assumption software will be developed under engineering-style "waterfall" model, under single organisational control
- Challenges to these assumptions include:
 - Agile Development
 - Open Source
 - Untrusted platforms (incl. counterfeit hardware)
 - Software / hardware boundary (e.g. VHDL)
 - Multicore Processors
 - Use of structured data (e.g. XML) to control behaviour

Emerging Challenges

Top 10 Strategic Technology Trends for 2012

- Media Tablets and Beyond
- Mobile-Centric Applications and Interfaces
- Contextual and Social User Experience
- Internet of Things
- App Stores and Marketplaces
- Next-Generation Analytics
- Big Data
- In-Memory Computing
- Extreme Low-Energy Servers
- Cloud Computing

Source: Gartner, Inc. (18 October 2011)

Current SDR Drivers

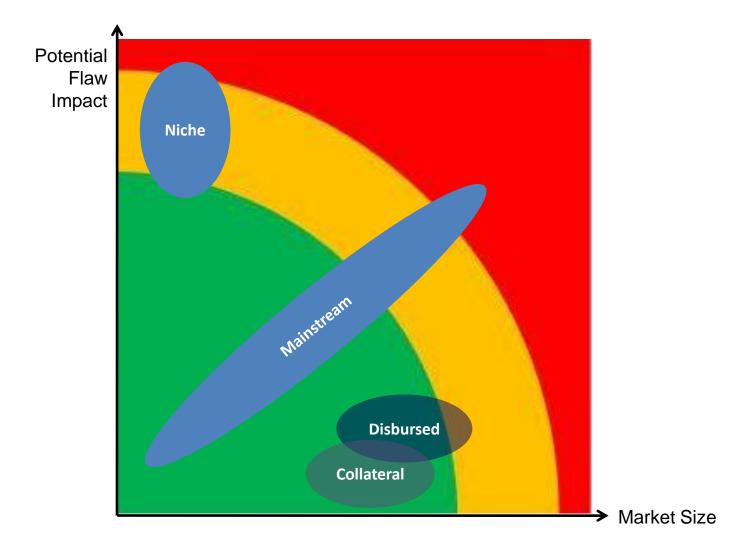
- 2010 UK National Security Strategy has Cyber-attack and deficiencies as one of the 4 "Tier One" Risks
- New Technological / Societal challenges:
 - Distributed application platforms and services ("Cloud")
 - Mobile Devices and Lightweight operating systems
 - Consumerisation / Bring-Your-Own-Device (BYOD)
 - Commoditisation in previously closed architectures
 - Consolidation for energy efficiency (Low Carbon / Green)
- These are likely to present Disruptive Challenges, <u>fundamentally deepening</u> dependence on Software

Software Faults

- Mitre's Common Weakness Enumeration (CWE) is a community developed, formal list of software weakness types created to:
 - Serve as a common language for describing software weaknesses in architecture, design, or code
 - Serve as a standard measuring stick for software tools targeting these weaknesses
 - Provide a common baseline standard for weakness identification, mitigation, and prevention efforts
- Currently 810 distinct CWE entries identified

Mitre/SANS CWE Top 25 (1)

Rank	ID	Name	
1	<u>CWE-79</u>	Failure to Preserve Web Page Structure ('Cross-site Scripting')	
2	<u>CWE-89</u>	Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection')	
3	CWE-120	Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')	
4	CWE-352	Cross-Site Request Forgery (CSRF)	
5	<u>CWE-285</u>	Improper Access Control (Authorization)	
6	<u>CWE-807</u>	Reliance on Untrusted Inputs in a Security Decision	
7	<u>CWE-22</u>	Improper Limitation of a Pathname to a Restricted Directory ('Path	
		Traversal')	
8	<u>CWE-434</u>	Unrestricted Upload of File with Dangerous Type	
9	<u>CWE-78</u>	Improper Sanitization of Special Elements used in an OS Command ('OS Command Injection')	
10	CWE-311	Missing Encryption of Sensitive Data	
11	CWE-798	Use of Hard-coded Credentials	
12	CWE-805	Buffer Access with Incorrect Length Value	
13	<u>CWE-98</u>	Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion')	



Mitre/SANS CWE Top 25 (2)

Rank	ID	Name	
14	<u>CWE-129</u>	Improper Validation of Array Index	
15	<u>CWE-754</u>	Improper Check for Unusual or Exceptional Conditions	
16	<u>CWE-209</u>	Information Exposure Through an Error Message	
17	<u>CWE-190</u>	Integer Overflow or Wraparound	
18	<u>CWE-131</u>	Incorrect Calculation of Buffer Size	
19	<u>CWE-306</u>	Missing Authentication for Critical Function	
20	<u>CWE-494</u>	Download of Code Without Integrity Check	
21	CWE-732	Incorrect Permission Assignment for Critical Resource	
22	<u>CWE-770</u>	Allocation of Resources Without Limits or Throttling	
23	<u>CWE-601</u>	URL Redirection to Untrusted Site ('Open Redirect')	
24	<u>CWE-327</u>	Use of a Broken or Risky Cryptographic Algorithm	
25	<u>CWE-362</u>	Race Condition	

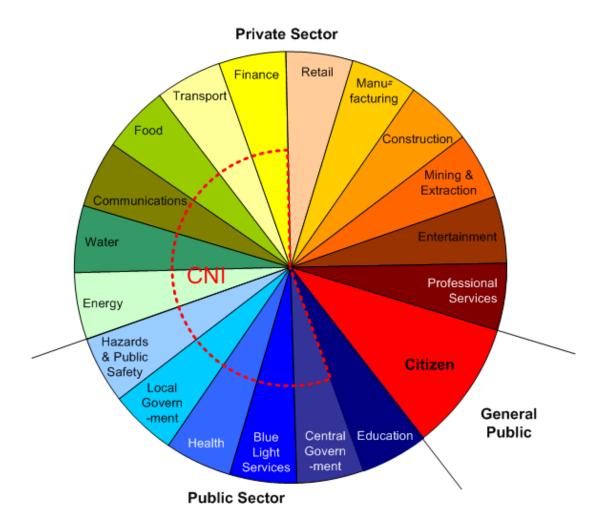
Risk Segmentation

S S D R I : UK's public-private partnership for Making Software Better

© Copyright 2003-2011

Software Security, Dependability and Resilience Initiative (S S D R I)

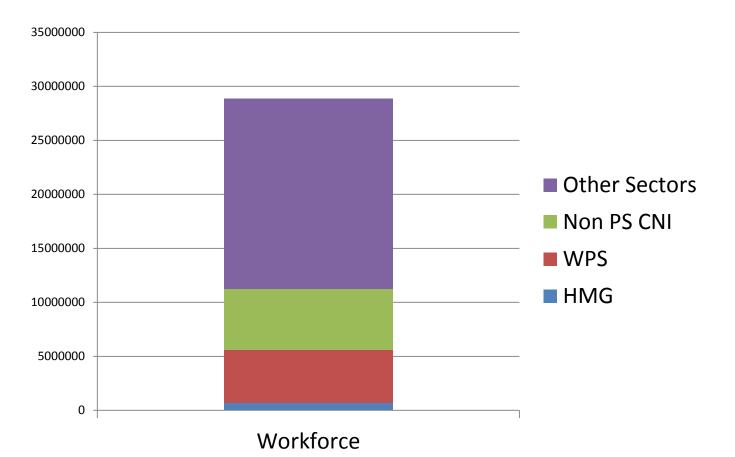
In response to previous work, the 2010 UK National Security Strategy, and emergent challenges, on 1st July 2011 UK formed SSDRI:


"A public-private platform for enhancing the overall software and systems culture, with the objective that all software should become designed, implemented and maintained in a secure, dependable and resilient manner"

SSDRI Scope

- Goal is to improve Software
 - Security (mainly protection of Confidentiality)
 - Dependability (mainly protection of Integrity)
 - Resilience (mainly protection of Availability)
- Importantly, this applies to **<u>both</u>** :
 - Specific software and systems developed for specialist markets where Security, Dependability and Resilience (SDR) are Functional Requirements, typically with Medium/High assurance needs
 - <u>And</u> to all other software and systems for which Security, Dependability and Resilience (SDR) are Non Functional Requirements (NFR), typically with Due Diligence needs

UK Economic Sectors

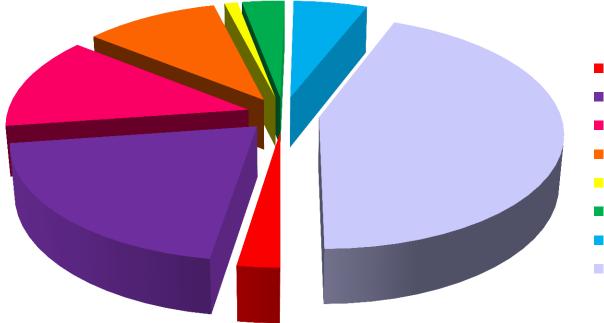


Source: GIPSI / Cabinet Office (2004)

S S D R I : UK's public-private partnership for Making Software Better

© Copyright 2003-2011

UK Potential Audiences

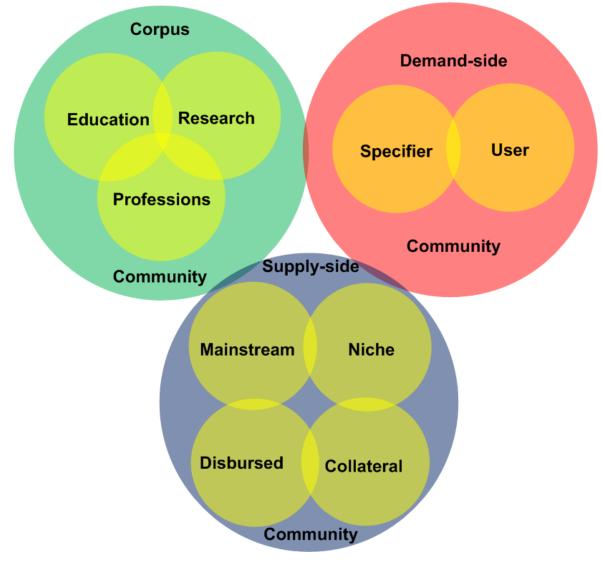

Not forgetting that 60m+ Citizens would also benefit from more trustable ICT

S S D R I : UK's public-private partnership for Making Software Better

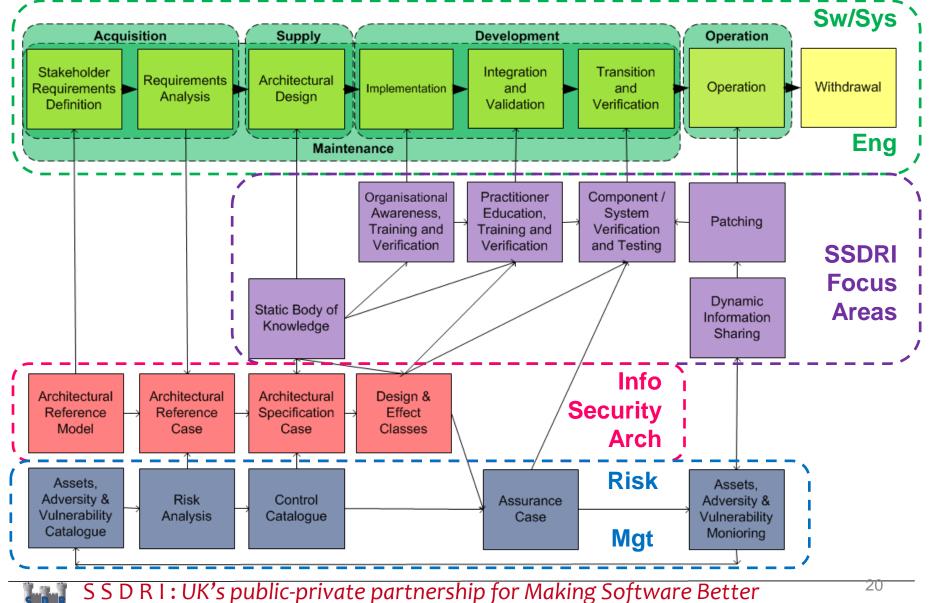
17

The International Dimension

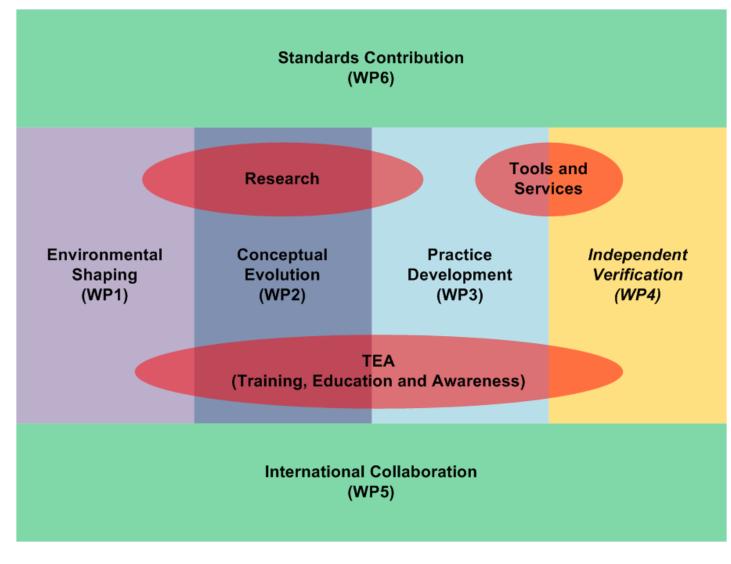
Internet Users


- United Kingdom
- Rest of Europe
- North America
- Latin America / Carib.
- Oceania / Australia
- Middle East
- Africa
- Asia

Source: National IA Forum (2010)


S S D R I : UK's public-private partnership for Making Software Better

© Copyright 2003-2011

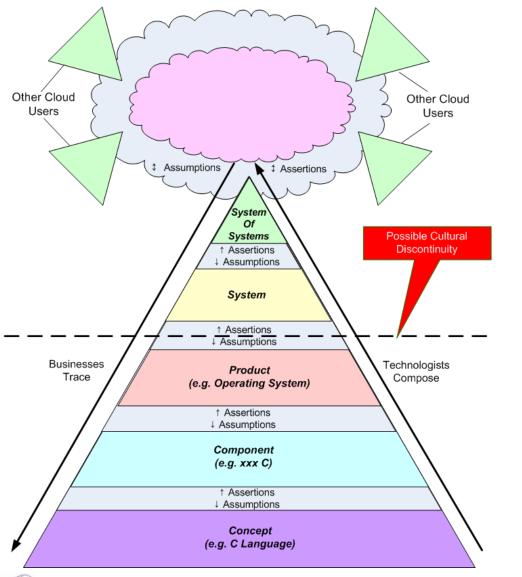

SSDRI Audiences

SSDRI Context: Lifecycle and Dependencies

SSDRI Work Packages and Effort Clusters

SSDRI Approach

- Many of concepts and practices needed for software Security / Dependability / Resilience have existed in specialist domains for many years
- Challenge is to "bake in" to <u>all</u> software, recognising that implementations may vary with Audiences and Functional / Assurance Requirements
- Focus of SSDRI on Pareto ("80:20") approaches to Making Software Better, iteratively using learnings from specialists domains and interpreting them for the common good
 - c.f. "Public Health": Prevention now avoids Treatment later


SSDRI WP1: Environmental Shaping SSDRI WP3: Practice Development

- In "mature" industries (e.g. Aviation Engineering), <u>all</u> practitioners intrinsically responsible for producing trustable outputs
- We need SSDR embedded at all levels so it becomes "part of the Culture":
 - <u>Training of current workforce</u>
 - <u>E</u>ducation of future workforce
 - <u>Awareness of all producers and consumers</u>

SSDRI WP2: Conceptual Evolution

- Software SDR requires research and innovation in :
 - Situational Awareness Horizon Scanning
 - Governance (e.g. Metrics, Trusted Information Sharing)
 - Human Factors (e.g. Stakeholder Behaviours)
 - Technical (e.g. New Techhologies and Attacks, Trustable Failure Modes, Compos ability and Traceability, Multicore Technologies)
- A particular challenge is Composability and Traceability

SSDRI: Composability and Traceability Challenge

- Assertions (\uparrow) & Assumptions (\downarrow):
 - Can be Positive (+ve) and/or
 Negative (-ve)
 - How should this be modelled ?
 - Who should be responsible ?
 - How should this be documented ?
 - Updates to Standards
 - Artefacts need to be in both System and IA terms
- Become Bidirectional Assertions

 (\$\$) & Assumptions (\$\$) for
 Composed System linking to
 Cloud
- An area for further study

SSDRI WP4: Independent Verification

- Product and Service Assurance splits (roughly) into 2 segments
 - "Due Diligence" by Independent Black Box testing
 - "High assurance" with preference for Formal Methods
- Also Maturity Model(s) needed for Supply Chain Assurance
- This Work Package is currently in abeyance whilst new schemes for Information Security Products and Services evolved by CESG

SSDRI WP5: International Collaboration

- Software SDR is not a "UK plc" problem
- International Collaboration is therefore an essential element of efforts
 - Multinational involvement was intrinsically part of the precursor "Paris Workshop"
- Initial International Collaboration options
 - International Standardisation through BSI IST/033
 - Bilateral collaboration with US peer organisation, the Software Assurance (SwA)

SSDRI WP6: International Standardisation

- No standardisation of Standards Development Organisations (SDO) !
- Leading UK recognised SDO in SSDR area would be ISO/IEC JTC1, with multiple active projects in SC7 / SC22 / SC27 / SC38
- Some work in ITU-T
- Also need to keep eye on *de facto* standardisation through other bodies, such as Mitre and OWASP

SSDRI and UK Cyber Security Strategy

- 2010 UK National Security Strategy (NSS) gives "Cyber" (attacks and shortcomings) as one of 4 "Tier One" Risks
- Amplified by UK Cyber Security Strategy (UKCSS) in 2011, which include Actions for:
 - Raising awareness of needs for protection, including supply chain dependencies (UKCSS 1.23; 4.11 → SSDRI WP1)
 - Anticipating technological, procedural and societal behaviour developments that affect cyberspace, identifying Centres of Excellence in research (UKCSS 4.1; 4.10 → SSDRI WP2)
 - ➤ Improving education at all levels, including higher and postgraduate level (UKCSS 4.3 → SSDRI WP3)
 - Working closely with the European Commission to encourage greater coherence within the EU on cyber issues (UKCSS 3.10 → SSDRI WP5)
 - Stimulating the development of international, regional and national standards that are readily used and understood (UKCSS 1.13; 1.24; 3.6)
 - → SSDRI WP6)

S S D R I : UK's public-private partnership for Making Software Better

S S D R I : UK's public-private partnership for Making Software Better

© Copyright 2003-2011

Contact Details

lan Bryant

Technical Director S S D R I

SSDRI Office

Gateway House pp4.30

De Montfort University - Cyber Security Centre

The Gateway, Leicester, LE1 9BH, England

ian.bryant@ssdri.org.uk

+44 79 7312 1924

secretariat@ssdri.org.uk

+44 33 0001 0479

www.ssdri.org.uk

<u>(Twitter: @ssdriuk)</u>

S S D R I : UK's public-private partnership for Making Software Better

31