

Using Automatic Speech Recognition for Attacking Acoustic CAPTCHAs: The Trade-off between Usability and Security

Hendrik Meutzner*, Viet-Hung Nguyen, Thorsten Holz, Dorothea Kolossa ACSAC'14, 11. December, 2014, New Orleans, Louisiana, USA

Outline

2 CAPTCHA Solver

- **3** Usability & Security of reCAPTCHA
- 4 Perceptually Motivated CAPTCHA Design

5 Conclusions

Outline

- **3** Usability & Security of reCAPTCHA
- 4 Perceptually Motivated CAPTCHA Design
- 5 Conclusions

The Concept of CAPTCHAs

 Completely Automated Public Turing Tests to Tell Computers and Humans Apart

Amos //	THEY"
Type the text Privacy & Terms	

Example of Google's image-based CAPTCHA scheme.

The Concept of CAPTCHAs

 Completely Automated Public Turing Tests to Tell Computers and Humans Apart

Amos	Wister
Type the text	
Privacy & Te	

Example of Google's image-based CAPTCHA scheme.

- Distinguish humans from computers to limit or even prevent the abuse in Internet services, e.g.,
 - automated account creation for sending spam mail.

The Concept of CAPTCHAs

 Completely Automated Public Turing Tests to Tell Computers and Humans Apart

Amos	Wister
Type the text	
Privacy & T	erms 🛛 😧 💛

Example of Google's image-based CAPTCHA scheme.

- Distinguish humans from computers to limit or even prevent the abuse in Internet services, e.g.,
 - automated account creation for sending spam mail.
- CAPTCHAs should be easy to solve by humans but difficult to break by computers.

Acoustic CAPTCHAs

Acoustic CAPTCHAs are beneficial for

- visually impaired people,
- hands-free operation,
- non-graphical devices.

Example of Google's audio-based CAPTCHA scheme.

RUHR-UNIVERSITÄT BOCHUM

RUB

Usability and Security of CAPTCHAs

■ Breaking CAPTCHAs represents a machine learning problem.

Usability and Security of CAPTCHAs

- Breaking CAPTCHAs represents a machine learning problem.
- A CAPTCHA is said to be broken if the success rate for automatic solving exceeds
 - 5 % [1], 1 % [2], 0.01 % [3],

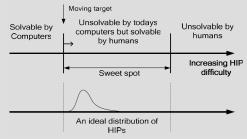
[1] J. Tam et al., "Breaking Audio CAPTCHAs," NIPS 2008.

[2] E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011.

[3] K. Chellapilla et al., "Building segmentation based humanfriendly Human Interactive Proofs," HIP2005.

Usability and Security of CAPTCHAs

- Breaking CAPTCHAs represents a machine learning problem.
- A CAPTCHA is said to be broken if the success rate for automatic solving exceeds
 - 5 % [1], 1 % [2], 0.01 % [3],
- "For good usability the human success rate should approach 90 %." [3]

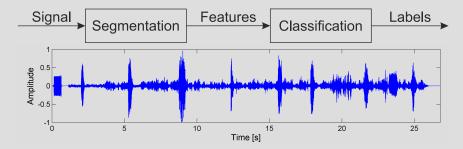


Regions of feasibility as a function of HIP difficulty for humans and computers algorithms. [3]

- [1] J. Tam et al., "Breaking Audio CAPTCHAs," NIPS 2008.
- [2] E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011.
- [3] K. Chellapilla et al., "Building segmentation based humanfriendly Human Interactive Proofs," HIP2005.

Attacks on Acoustic CAPTCHAs

■ Most previous attacks (e.g., [1,2]) are based on a two-stage approach:



[1] E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011. [2] J. Tam et al., "Breaking Audio CAPTCHAs," NIPS 2008.

Attacks on Acoustic CAPTCHAs

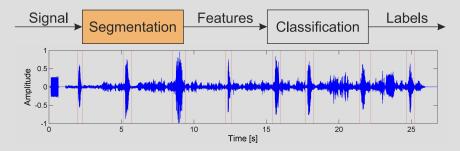
- Most previous attacks (e.g., [1,2]) are based on a two-stage approach:
 - 1. Computation of short-time signal energy and identification of peaks that exceed a specific energy threshold.



E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011.
 J. Tam et al., "Breaking Audio CAPTCHAs," NIPS 2008.

Attacks on Acoustic CAPTCHAs

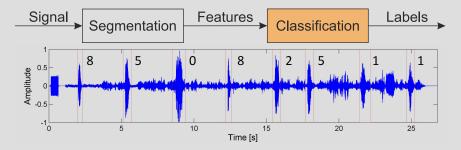
- Most previous attacks (e.g., [1,2]) are based on a two-stage approach:
 - 1. Computation of short-time signal energy and identification of peaks that exceed a specific energy threshold.
 - \Rightarrow Energy peaks are used for signal segmentation.



E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011.
 J. Tam et al., "Breaking Audio CAPTCHAs," NIPS 2008.

Attacks on Acoustic CAPTCHAs

- Most previous attacks (e.g., [1,2]) are based on a two-stage approach:
 - 1. Computation of short-time signal energy and identification of peaks that exceed a specific energy threshold.
 - \Rightarrow Energy peaks are used for signal segmentation.
 - 2. Classification (Least Squares, SVMs) of isolated word segments.



E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011.
 J. Tam et al., "Breaking Audio CAPTCHAs," NIPS 2008.

Outline

1 Motivation

2 CAPTCHA Solver

- **3** Usability & Security of reCAPTCHA
 - 4 Perceptually Motivated CAPTCHA Design

5 Conclusions

CAPTCHA Solver

- We use a hidden Markov model (HMM) based recognizer¹.
- Each word is modeled by an HMM that has 3 emitting states per phoneme and exhibits a left-to-right topology without state skips.
- The speech pauses (i.e., silence/noise) are represented by an additional model that has 3 emitting states and allows backward transitions and skips between the first and the last state.
- The state emission probabilities are represented by a Gaussian mixture model (GMM) having 8 mixture components.
- The features are given by 39-dimensional perceptual linear prediction (PLP) coefficients including their first and second order derivatives.
- Each feature vector corresponds to a window length of 25 ms of the audio signal.

¹S. Young, "The HTK Hidden Markov Model Toolkit: Design and Philosophy," Entropic Cambridge Research Laboratory, Ltd, 1994.

Outline

2 CAPTCHA Solver

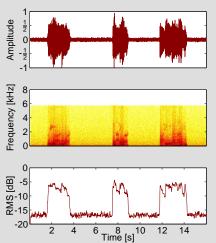
3 Usability & Security of reCAPTCHA

4 Perceptually Motivated CAPTCHA Design

5 Conclusions

reCAPTCHA

Example: "314-694-5279"



- The words are given by digits between "0" and "9".
- The digits are spoken in a block-wise manner.
- The number of digits is varied between 6 and 12.
- Some of the digits are overlapping in time.
- The speech is synthetic and consists of a single female voice.
- The overall voice quality is comparatively low.
- All signals exhibit the same stationary background noise.

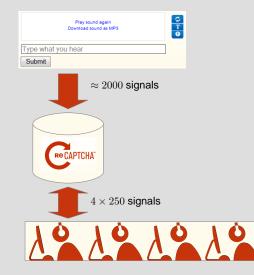
RUHR-UNIVERSITÄT BOCHUM

RUB

Downloading CAPTCHAs

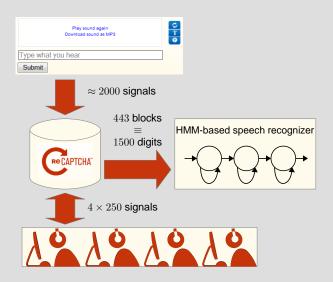
Play sound again Download sound as MP3		
Type what you hear Submit		
≈ 2000 signals		

Obtaining Transcriptions

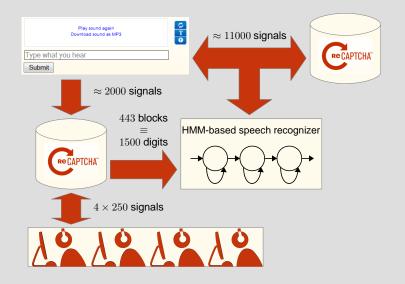


RUHR-UNIVERSITÄT BOCHUM

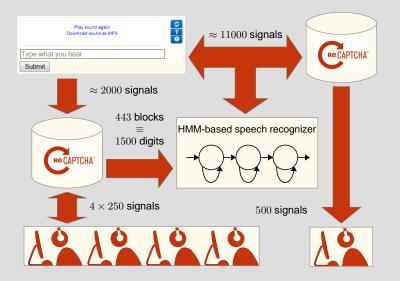
Training the Speech Recognizer



Security Analysis



Assessing Human Usability



Analysis Results

■ Inter-labeler agreement (training corpus):

	# Agreements			
	1 (No)	2	3	4 (All)
Digit blocks Full transcription		29.73 % 36.00 %		27.20 % 4.80 %

Analysis Results

RUB

■ Inter-labeler agreement (training corpus):

	# Agreements			
	1 (No)	2	3	4 (All)
Digit blocks Full transcription		29.73 % 36.00 %		27.20 % 4.80 %

Success rate for automated CAPTCHA solving (attack): 63%.

Analysis Results

■ Inter-labeler agreement (training corpus):

	# Agreements			
	1 (No)	2	3	4 (All)
Digit blocks Full transcription		29.73 % 36.00 %		27.20 % 4.80 %

Success rate for automated CAPTCHA solving (attack): 63 %.
 Human success rate (listening test): 24 % (σ =17.35 %).

Analysis Results

■ Inter-labeler agreement (training corpus):

	# Agreements			
	1 (No)	2	3	4 (All)
Digit blocks Full transcription		29.73 % 36.00 %		27.20 % 4.80 %

- Success rate for automated CAPTCHA solving (attack): 63%.
- Human success rate (listening test): 24 % ($\sigma = 17.35$ %).
- Previous attacks:

Authors	Method	Success rate
Bursztein et al. [1] Sano et al. [2]		1.5 % 52 %

 E. Bursztein et al., "The Failure of Noise-Based Non-Continuous Audio Captchas," S&P 2011.
 S. Sano, et al., "Solving Google's Continuous Audio CAPTCHA with HMM-Based Automatic Speech Recognition," Advances in Information and Computer Security, Springer, 2013.

Outline

2 CAPTCHA Solver

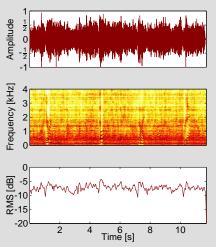
3 Usability & Security of reCAPTCHA

4 Perceptually Motivated CAPTCHA Design

5 Conclusions

Proposed CAPTCHA

Example: "01-64-75-36"



- The words are given by digits between "0" and "9".
 - \Rightarrow Fair comparison, usability.
- Real speech recordings from different speakers (m/f).
- Two consecutive words are overlapping in time.
- Non-stationary background noise, scaled such that the signal energy is constant.
 - \Rightarrow Prevent isolation of words.
 - \Rightarrow Confuse speech recognizers.
- Artificial reverberation
 - \Rightarrow Automatic speech recognition is more challenging.
 - \Rightarrow Intelligibility remains good.

- Signal generation is based on a subset of the TIDIGITS speech corpus.
 - Single-digit recordings of 25 male and 25 female speakers, corresponding to 1000 individual digits.

- Signal generation is based on a subset of the TIDIGITS speech corpus.
 - Single-digit recordings of 25 male and 25 female speakers, corresponding to 1000 individual digits.
- Random digits are chosen from the database, alternating male and female speakers.

- Signal generation is based on a subset of the TIDIGITS speech corpus.
 - Single-digit recordings of 25 male and 25 female speakers, corresponding to 1000 individual digits.
- Random digits are chosen from the database, alternating male and female speakers.
- Two consecutive digits are superimposed in time.
 - The superposition of digits is based on their short-time power.

- Signal generation is based on a subset of the TIDIGITS speech corpus.
 - Single-digit recordings of 25 male and 25 female speakers, corresponding to 1000 individual digits.
- Random digits are chosen from the database, alternating male and female speakers.
- Two consecutive digits are superimposed in time.
 - The superposition of digits is based on their short-time power.
- The number of digit blocks per CAPTCHA is varied between 4–5 (8–10 digits per CAPTCHA).

- Signal generation is based on a subset of the TIDIGITS speech corpus.
 - Single-digit recordings of 25 male and 25 female speakers, corresponding to 1000 individual digits.
- Random digits are chosen from the database, alternating male and female speakers.
- Two consecutive digits are superimposed in time.
 - The superposition of digits is based on their short-time power.
- The number of digit blocks per CAPTCHA is varied between 4–5 (8–10 digits per CAPTCHA).
- All digit blocks are separated by speech pauses of random length.

- All speech pauses are superimposed by a multi-talker babble noise.
 - The noise signal is scaled such that the the short-time energy of the resulting signal is somewhat constant over time.

Creating CAPTCHAs 2/2

All speech pauses are superimposed by a multi-talker babble noise.

- The noise signal is scaled such that the the short-time energy of the resulting signal is somewhat constant over time.
- The mixture signal is reverberated by a randomly generated impulse response:

$$y(t) = x(t) * h(t)$$
$$= x(t) * \left(w(t)e^{-t/\tau}\right)$$

w(t): white Gaussian noise (random) τ : decay time (fixed)

Creating CAPTCHAs 2/2

All speech pauses are superimposed by a multi-talker babble noise.

- The noise signal is scaled such that the the short-time energy of the resulting signal is somewhat constant over time.
- The mixture signal is reverberated by a randomly generated impulse response:

$$y(t) = x(t) * h(t)$$
$$= x(t) * \left(w(t)e^{-t/\tau}\right)$$

w(t): white Gaussian noise (random) τ : decay time (fixed)

- We create and compare CAPTCHAs for two different decay times, i.e.,
 - $\tau = T_{60} = 100 \text{ ms}$,
 - $\tau = T_{60} = 300$ ms.

Analysis Results

Speech recognition results (Attack):

# Train	T_{60} [ms]	Sent. [%]	Word [%]
200	0	15.86	77.03
200	100	5.33	64.49
200	300	1.25	56.11
400	0	17.42	78.38
400	100	5.06	65.32
400	300	2.34	60.20
800	0	20.38	79.71
800	100	6.87	67.21
800	300	3.14	62.88
1600	0	26.43	82.43
1600	100	6.26	67.37
1600	300	4.11	64.66

 All scores are based on 10,000 CAPTCHAs (sentences), corresponding to 90,140 words.

Analysis Results

RUB

•			,
# Train	T_{60} [ms]	Sent. [%]	Word [%]
200	0	15.86	77.03
200	100	5.33	64.49
200	300	1.25	56.11
400	0	17.42	78.38
400	100	5.06	65.32
400	300	2.34	60.20
800	0	20.38	79.71
800	100	6.87	67.21
800	300	3.14	62.88
1600	0	26.43	82.43
1600	100	6.26	67.37
1600	300	4.11	64.66

Speech recognition results (Attack):

Listening test results:

	Sent. [%]	Word [%]			
μ	56.38	91.74			
σ	21.47	7.18			
$T_{60}=100~\mathrm{ms}$					
	Sent. [%]	Word [%]			
		word [76]			
μ	37.81	86.88			
$\mu \sigma$					

- The results were obtained from 16 individual participants for each reverberation time.
- The scores correspond to 800 CAPTCHAs (sentences) and 7,280 words.
- All scores are based on 10,000 CAPTCHAs (sentences), corresponding to 90,140 words.

Outline

- 2 CAPTCHA Solver
- **3** Usability & Security of reCAPTCHA
- 4 Perceptually Motivated CAPTCHA Design

5 Conclusions

reCAPTCHA vs. Proposed Scheme:

	ASR	Human
Proposed CAPTCHA ($T_{60} = 100 \text{ ms}$) reCAPTCHA (as of March 2014)		56.38 % 24.40 %

- Conservative CAPTCHAs can potentially be learned by machines at a relatively low cost.
- Increased CAPTCHA security (using signal distortions) comes at the cost of lower human pass rates.

- Conservative CAPTCHAs can potentially be learned by machines at a relatively low cost.
- Increased CAPTCHA security (using signal distortions) comes at the cost of lower human pass rates.
- We assume that the theoretical sweet-spot, i.e.,
 - high success rates for humans ($\geq 90 \%$),
 - low success rates for machines ($\leq 1\,\%$ or even $\leq 0.01\,\%$).

can not be achieved by using conventional methods.

- Conservative CAPTCHAs can potentially be learned by machines at a relatively low cost.
- Increased CAPTCHA security (using signal distortions) comes at the cost of lower human pass rates.
- We assume that the theoretical sweet-spot, i.e.,
 - high success rates for humans ($\geq 90 \%$),
 - low success rates for machines ($\leq 1 \%$ or even $\leq 0.01 \%$). can not be achieved by using conventional methods.
- It is necessary to investigate into more sophisticated CAPTCHAs, e.g.,
 - CAPTCHAs that are based on context-dependent questions, requiring **intelligence** and/or **previous knowledge**.

RUHR-UNIVERSITÄT BOCHUM

Thank you!

RUHR-UNIVERSITÄT BOCHUM

Thank you!

Questions?

Winograd Schemas

Example 1:

- Question: The trophy doesn't fit into the brown suitcase because it's too [small/large]. What is too [small/large]?
 - Answer: The [suitcase/the trophy].

Winograd Schemas

Example 1:

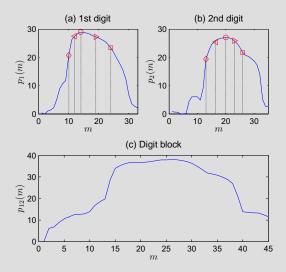
Question: The trophy doesn't fit into the brown suitcase because it's too [small/large]. What is too [small/large]?

Answer: The [suitcase/the trophy].

Example 2:

Questions: The man couldn't lift his son because he was so [weak/heavy]. Who was [weak/heavy]? Answer: The [man/the son].

Creating Digit Blocks

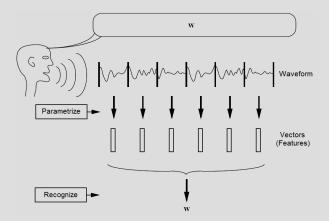


Metrics

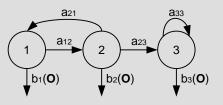
Word Acc. =
$$100 \cdot \frac{W - W_D - W_I - W_S}{W}$$
,
Sent. Acc. = $100 \cdot \frac{S_C}{S}$,

- W: Number of words
- W_D : Word deletions
- W_I: Word insertions
- W_S : Word substitutions
- S: Number of sentences
- S_C: Number of correctly transcribed sentences

General Task



Introduction of Hidden Markov Models



Example of an HMM

- *a_{ij}*: state transition probabilities
- *b_j*: output probabilities
- o: observations (features)
- π_j : initial state probabilities

- The HMM consists of states and links.
 - Each link allows a transition between two states.
 - An observation is generated with a stochastic transition from one state to another.
 - Each observation o is one of the symbols in $V = \{v_1 \dots v_K\}$
- The complete HMM is defined by the parameter set $\lambda = (\mathbf{A}, \mathbf{B}, \boldsymbol{\Pi})$.

The Three Basic Problems for HMMs

- 1. Given the observation sequence $\mathbf{O} = \mathbf{o}_1 \mathbf{o}_2 \dots \mathbf{o}_T$ and the model λ , how to compute $P(\mathbf{O}|\lambda)$?
- 2. Given the observation sequence $\mathbf{O} = \mathbf{o}_1 \mathbf{o}_2 \dots \mathbf{o}_T$ and the model λ , how to choose a corresponding state sequence $Q = q_1 q_2 \cdots q_T$, i.e.,

$$Q^* = \operatorname*{arg\,max}_{Q} P(Q|\mathbf{O}, \lambda)$$

that best explains the observations? \rightarrow "Recognition"

3. How to adjust $\lambda = (\mathbf{A}, \mathbf{B}, \boldsymbol{\Pi})$ to maximize $P(\mathbf{O}|\lambda)$ (maximum likelihood estimation)? \rightarrow "Training"

$$\lambda_{\mathsf{ML}} = \arg\max_{\lambda} \mathrm{P}(\mathbf{O}|\lambda)$$

RUHR-UNIVERSITÄT BOCHUM

Problem 1 - Computation of $P(\mathbf{O}|\lambda)$

Naive approach: enumerate every possible state sequence

$$P(\mathbf{O}|Q,\lambda) = \prod_{t=1}^{T} P(\mathbf{o}_t|q_t,\lambda) \quad \text{(statistical independent observations)}$$
$$= b_{q_1}(\mathbf{o}_1)b_{q_2}(\mathbf{o}_2)\cdots b_{q_T}(\mathbf{o}_T)$$
$$P(Q|\lambda) = \pi_{q_1}a_{q_1q_2}a_{q_2q_3}\cdots a_{q_{T-1}q_T}$$
$$P(\mathbf{O}|\lambda) = \sum_{\forall Q} P(\mathbf{O}|Q,\lambda)P(Q|\lambda)$$
$$= \sum_{q_1,q_2,\dots,q_T} \pi_{q_1}b_{q_1}(\mathbf{o}_1)a_{q_1q_2}b_{q_2}(\mathbf{o}_2)\cdots a_{q_{T-1}q_T}b_{q_T}(\mathbf{o}_T)$$

• Computational infeasible due to $2TN^T$ calculations.

Problem 1 - Computation of $P(\mathbf{O}|\lambda)$

More efficient approach: forward-backward procedure

$$\alpha_t(i) = P(\mathbf{o}_1 \mathbf{o}_2 \cdots \mathbf{o}_t, q_t = S_i | \lambda)$$
 (forward variables)

1. Initialization

$$\alpha_1(i) = \pi_i b_i(\mathbf{o}_1), \quad 1 \le i \le N$$

2. Recursion

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(\mathbf{o}_{t+1}), \quad 1 \le t \le T-1, \quad 1 \le j \le N$$

3. Termination

$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$
 (terminal forward variables)

• N^2T calculations, rather than $2TN^T$ as for the naive approach.

Problem 1 - Computation of $P(\mathbf{O}|\lambda)$

Backward procedure:

 $\beta_t(i) = P(\mathbf{o}_{t+1}\mathbf{o}_{t+2}\cdots\mathbf{o}_T, q_t = S_i|\lambda)$ (backward variables)

1. Initialization

$$\beta_T(i) = 1, \quad 1 \le i \le N$$

2. Recursion

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(\mathbf{o}_{t+1}) \beta_{t+1}(j), \quad t = T - 1, \dots, 1, \quad 1 \le i \le N$$

N²T calculations

Problem 2 - Optimal State Sequence

- Find $Q^* = \arg \max_{Q} P(Q|\mathbf{O}, \lambda)$.
- Maximize the expected number of correct individual states.
- Probability of being in state S_i at time t, given O and λ :

$$P_{t}(i) = P(q_{t} = S_{i} | \mathbf{O}, \lambda)$$

$$= \frac{\alpha_{t}(i)\beta_{t}(i)}{P(\mathbf{O}|\lambda)}$$

$$= \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i)\beta_{t}(i)}, \quad \left(\sum_{i=1}^{N} \gamma_{t}(i) = 1\right)$$

• The most likely state q_t^* at time t is then given by

$$q_t^* = \underset{1 \le i \le N}{\operatorname{arg\,max}} \left\{ \gamma_t(i) \right\}, \quad 1 \le t \le T.$$

How to find the single best state sequence?

Viterbi Algorithm

- $\blacksquare \text{ Note that } Q^* = \mathop{\arg\max}_Q P(Q|\mathbf{O},\lambda) = \mathop{\arg\max}_Q P(Q,\mathbf{O}|\lambda)$
- Define a score along a single path at time t that ends in state S_i :

$$\delta_t(i) = \max_{q_1, q_2, \dots, q_{t-1}} P(q_1 q_2 \dots q_t = i, \mathbf{o}_1 \mathbf{o}_2 \dots \mathbf{o}_t | \lambda)$$

1. Initialization ($1 \le i \le N$):

$$\delta_1(i) = \pi_i b_i(\mathbf{o}_1) \qquad \Psi_1(i) = 0$$

2. Recursion ($2 \le t \le T, 1 \le j \le N$):

$$\delta_t(j) = \left(\max_{i=1\dots N} \delta_{t-1}(i)a_{ij}\right) b_j(\mathbf{o}_t) \qquad \Psi_t(j) = \operatorname*{arg\,max}_{i=1\dots N} \delta_{t-1}a_{ij}$$

3. Termination:

$$P^*(\mathbf{o}_1 \dots \mathbf{o}_T | \lambda) = \max_{i=1\dots N} \delta_T(i) \qquad q_T^* = \operatorname*{arg\,max}_{i=1\dots N} \delta_T(i)$$

4. Path backtracking: $q_t^* = \Psi_{t+1}(q_{t+1}^*), \quad t = T - 1, \cdots, 1.$

Problem 3 - Adjust the Model Parameters $\boldsymbol{\lambda}$

- There is no known way to analytically solve for the model, which maximizes the probability of the observation sequence.
- Choose $\lambda = (\mathbf{A}, \mathbf{B}, \boldsymbol{\Pi})$ such that $P(\mathbf{O}|\lambda)$ is (locally) maximized.

Expectation maximization (EM) algorithm

- General method (not only for HMMs).
- Start with some λ^0 .
- Iteratively compute:
 - 1. $F(\lambda, \lambda^{t-1}) := E_Q \left[\log P(\mathbf{O}, Q|\lambda) | \mathbf{O}, \lambda^{t-1} \right]$ (E-step) 2. $\lambda^t = \operatorname{argmax}_{\lambda} F(\lambda, \lambda^{t-1})$ (M-step)
- An increase of F provably increases the likelihood $P(\mathbf{O}|\lambda)$.
- Provably converges to a local maximum of $P(\mathbf{O}|\lambda)$.
- For estimating HMM parameters, an instance of the EM algorithm is used, namely the Baum-Welch algorithm.

Baum-Welch Algorithm

Probability of being in state S_i at time t, state S_j at time t + 1, given O and λ : $\xi_t(i, j) = P(q_t = S_i, q_{t+1} = S_j | \mathbf{O}, \lambda)$ $= \frac{\alpha_t(i)a_{ij}b_j(\mathbf{O}_{t+1})\beta_{t+1}(j)}{P(\mathbf{O}|\lambda)} = \frac{\alpha_t(i)a_{ij}b_j(\mathbf{O}_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(i)a_{ij}b_j(\mathbf{O}_{t+1})\beta_{t+1}(j)}$

Express
$$\gamma_t(i)$$
 in terms of $\xi_t(i, j)$:

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j)$$

Reestimation formulae:

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \qquad \hat{b}_j(k) = \frac{\sum_{t=1}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)} \qquad \hat{\pi}_i = \gamma_1(i)$$

Baum-Welch Algorithm

 $\hat{a}_{ij} = \frac{\text{expected \# of transitions from state } S_i \text{ to } S_j}{\text{expected \# of transitions from state } S_i}$

 $\hat{b}_j(k) = \frac{\text{expected \# of times being in state } S_j \text{ and observing symbol } v_k}{\text{expected \# of times being in state } S_j}$

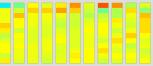
 $\hat{\pi}_i =$ expected # of times being in state S_i at time t = 1

Using HMMs for Speech Recognition

- Represent each word or phoneme by an individual HMM.
- A common model topology is a left-to-right model (possibly with skips).
- The output probabilities *b_q*(**o**) are modeled by using continuous density multivariate distributions, e.g., Gaussian mixture models (GMMs):

$$b_{q}(\mathbf{o}) = \sum_{\kappa=1}^{K} c_{\kappa,q} \mathcal{N}(\mathbf{o} | \boldsymbol{\mu}_{\kappa,q}, \boldsymbol{\Sigma}_{\kappa,q}), \qquad (1)$$
$$\sum_{\kappa=1}^{K} c_{\kappa,q} = 1 \quad \forall q. \qquad (2)$$

Extracting Feature Vectors



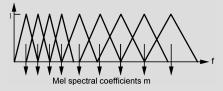
- 1. Segmentation of the input signal into (overlapping) frames
 - Typical frame lengths $\approx 25 \text{ ms}$
 - Overlap between frames $\approx 50-75$ %
- 2. Extraction of features for each frame, e.g.,
 - Mel Frequency Cepstral Coefficients (MFCC),
 - Perceptual Linear Prediction (PLP),
 - Considering dynamics by incorporating 1st and 2nd order derivatives (Δ, ΔΔ).

Feature Extraction (MFCCs)

1. Compute the short-time Fourier transform (STFT) for each frame:

$$X(m,n) = \sum_{i=0}^{L-1} x(mR+i)h(i)e^{-j\frac{2\pi i}{L}n}$$

2. Warp spectral components onto the Mel scale:



3. Apply the discrete cosine transform to the log-Mel spectrum:

$$\tilde{X}(m,c) = \sum_{m=0}^{L'-1} \ln\left(\hat{X}(m,m)\right) \cos\left[\frac{\pi}{L'}\left(m+\frac{1}{2}\right)c\right].$$

4. Observation vector: $\mathbf{o}_t = \begin{bmatrix} \tilde{X}(m,0) & \tilde{X}(m,1) & \cdots & \tilde{X}(m,L'-1) \end{bmatrix}^{\mathrm{T}}$.

Training using Sentences

RUB

- Reestimation algorithm, e.g., Baum-Welch, remains unchanged by using sentences, i.e., sequences of words, for training.
 - 1. For training, the corresponding transcriptions for each sentence ("labels") have to be known.
 - 2. The respective models for each sentence are concatenated, which results in a larger HMM.
 - 3. The resulting larger HMM is trained by using the Baum-Welch reestimation procedure.

Recognition of Continuous Speech

- Combine individual word models into compound HMM.
 - Adjust the compound HMM to the underlying grammar, e.g.: <"one" or "two" or "three" or ... or "silence">

