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The Concept of CAPTCHAs

� Completely Automated Public Turing Tests to Tell Computers and
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Example of Google’s image-based CAPTCHA scheme.
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The Concept of CAPTCHAs

� Completely Automated Public Turing Tests to Tell Computers and
Humans Apart

Example of Google’s image-based CAPTCHA scheme.

� Distinguish humans from computers to limit or even prevent the abuse
in Internet services, e.g.,

• automated account creation for sending spam mail.

� CAPTCHAs should be easy to solve by humans but difficult to break
by computers.
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Acoustic CAPTCHAs

� Acoustic CAPTCHAs are beneficial for
• visually impaired people,
• hands-free operation,
• non-graphical devices.

Example of Google’s audio-based CAPTCHA scheme.
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Usability and Security of CAPTCHAs
� Breaking CAPTCHAs represents a machine learning problem.
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Usability and Security of CAPTCHAs
� Breaking CAPTCHAs represents a machine learning problem.
� A CAPTCHA is said to be broken if the success rate for automatic

solving exceeds
• 5 % [1], 1 % [2], 0.01 % [3],

[1] J. Tam et al., “Breaking Audio CAPTCHAs," NIPS 2008.
[2] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[3] K. Chellapilla et al., “Building segmentation based humanfriendly Human Interactive Proofs,” HIP2005.
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Usability and Security of CAPTCHAs
� Breaking CAPTCHAs represents a machine learning problem.
� A CAPTCHA is said to be broken if the success rate for automatic

solving exceeds
• 5 % [1], 1 % [2], 0.01 % [3],

� “For good usability the human success rate should approach 90 %.” [3]

Regions of feasibility as a function of HIP difficulty for humans and computers algorithms. [3]

[1] J. Tam et al., “Breaking Audio CAPTCHAs," NIPS 2008.
[2] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[3] K. Chellapilla et al., “Building segmentation based humanfriendly Human Interactive Proofs,” HIP2005.
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Attacks on Acoustic CAPTCHAs
� Most previous attacks (e.g., [1,2]) are based on a two-stage approach:

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] J. Tam et al., “Breaking Audio CAPTCHAs," NIPS 2008.
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1. Computation of short-time signal energy and identification of
peaks that exceed a specific energy threshold.
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Attacks on Acoustic CAPTCHAs
� Most previous attacks (e.g., [1,2]) are based on a two-stage approach:

1. Computation of short-time signal energy and identification of
peaks that exceed a specific energy threshold.
⇒ Energy peaks are used for signal segmentation.

2. Classification (Least Squares, SVMs) of isolated word segments.

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] J. Tam et al., “Breaking Audio CAPTCHAs," NIPS 2008.
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CAPTCHA Solver

� We use a hidden Markov model (HMM) based recognizer1.

� Each word is modeled by an HMM that has 3 emitting states per
phoneme and exhibits a left-to-right topology without state skips.

� The speech pauses (i.e., silence/noise) are represented by an
additional model that has 3 emitting states and allows backward
transitions and skips between the first and the last state.

� The state emission probabilities are represented by a Gaussian
mixture model (GMM) having 8 mixture components.

� The features are given by 39-dimensional perceptual linear prediction
(PLP) coefficients including their first and second order derivatives.

� Each feature vector corresponds to a window length of 25 ms of the
audio signal.

1S. Young, “The HTK Hidden Markov Model Toolkit: Design and Philosophy,” Entropic
Cambridge Research Laboratory, Ltd, 1994.
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reCAPTCHA

Example: “314-694-5279”
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� The words are given by digits
between “0” and “9”.

� The digits are spoken in a
block-wise manner.

� The number of digits is varied
between 6 and 12.

� Some of the digits are
overlapping in time.

� The speech is synthetic and
consists of a single female voice.

� The overall voice quality is
comparatively low.

� All signals exhibit the same
stationary background noise.
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example_recaptcha_2013_hard_20131202_101816.wav
Media File (audio/wav)



Downloading CAPTCHAs

≈ 2000 signals

14



Obtaining Transcriptions

≈ 2000 signals

4× 250 signals
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Training the Speech Recognizer

≈ 2000 signals

4× 250 signals

443 blocks
≡

1500 digits
HMM-based speech recognizer
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Security Analysis

≈ 2000 signals

≈ 11000 signals

4× 250 signals

443 blocks
≡

1500 digits
HMM-based speech recognizer
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Assessing Human Usability

≈ 2000 signals

≈ 11000 signals

4× 250 signals

443 blocks
≡

1500 digits

500 signals

HMM-based speech recognizer
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Analysis Results
� Inter-labeler agreement (training corpus):

# Agreements

1 (No) 2 3 4 (All)

Digit blocks 11.20 % 29.73 % 31.87 % 27.20 %
Full transcription 49.20 % 36.00 % 10.00 % 4.80 %
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Analysis Results
� Inter-labeler agreement (training corpus):

# Agreements

1 (No) 2 3 4 (All)

Digit blocks 11.20 % 29.73 % 31.87 % 27.20 %
Full transcription 49.20 % 36.00 % 10.00 % 4.80 %

� Success rate for automated CAPTCHA solving (attack): 63 %.
� Human success rate (listening test): 24 % (σ =17.35 %).
� Previous attacks:

Authors Method Success rate

Bursztein et al. [1] Classification 1.5 %
Sano et al. [2] Speech recognition 52 %

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] S. Sano, et al., “Solving Google’s Continuous Audio CAPTCHA with HMM-Based Automatic Speech
Recognition,” Advances in Information and Computer Security, Springer, 2013.
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Proposed CAPTCHA
Example: “01-64-75-36”
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� The words are given by digits
between “0” and “9”.
⇒ Fair comparison, usability.

� Real speech recordings from
different speakers (m/f).

� Two consecutive words are
overlapping in time.

� Non-stationary background
noise , scaled such that the
signal energy is constant.
⇒ Prevent isolation of words.
⇒ Confuse speech recognizers.

� Artificial reverberation
⇒ Automatic speech recognition
is more challenging.
⇒ Intelligibility remains good.
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example_own_captcha_01647536_babble_rev100.wav
Media File (audio/wav)



Creating CAPTCHAs 1/2

� Signal generation is based on a subset of the TIDIGITS speech
corpus.

• Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.
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Creating CAPTCHAs 1/2

� Signal generation is based on a subset of the TIDIGITS speech
corpus.

• Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.

� Random digits are chosen from the database, alternating male and
female speakers.

� Two consecutive digits are superimposed in time.
• The superposition of digits is based on their short-time power.

� The number of digit blocks per CAPTCHA is varied between 4–5 (8–10
digits per CAPTCHA).

� All digit blocks are separated by speech pauses of random length.
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Creating CAPTCHAs 2/2

� All speech pauses are superimposed by a multi-talker babble noise.
• The noise signal is scaled such that the the short-time energy of

the resulting signal is somewhat constant over time.
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Creating CAPTCHAs 2/2

� All speech pauses are superimposed by a multi-talker babble noise.
• The noise signal is scaled such that the the short-time energy of

the resulting signal is somewhat constant over time.

� The mixture signal is reverberated by a randomly generated impulse
response:

y(t) = x(t) ∗ h(t)

= x(t) ∗
(

w(t)e−t/τ
)

w(t): white Gaussian noise (random) τ : decay time (fixed)
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Creating CAPTCHAs 2/2

� All speech pauses are superimposed by a multi-talker babble noise.
• The noise signal is scaled such that the the short-time energy of

the resulting signal is somewhat constant over time.

� The mixture signal is reverberated by a randomly generated impulse
response:

y(t) = x(t) ∗ h(t)

= x(t) ∗
(

w(t)e−t/τ
)

w(t): white Gaussian noise (random) τ : decay time (fixed)

� We create and compare CAPTCHAs for two different decay times, i.e.,
• τ =̂ T60 = 100 ms,
• τ =̂ T60 = 300 ms.
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Analysis Results
Speech recognition results (Attack):

# Train T60 [ms] Sent. [%] Word [%]

200 0 15.86 77.03
200 100 5.33 64.49
200 300 1.25 56.11

400 0 17.42 78.38
400 100 5.06 65.32
400 300 2.34 60.20

800 0 20.38 79.71
800 100 6.87 67.21
800 300 3.14 62.88

1600 0 26.43 82.43
1600 100 6.26 67.37
1600 300 4.11 64.66

� All scores are based on 10,000 CAPTCHAs
(sentences), corresponding to 90,140 words.
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Analysis Results
Speech recognition results (Attack):

# Train T60 [ms] Sent. [%] Word [%]

200 0 15.86 77.03
200 100 5.33 64.49
200 300 1.25 56.11

400 0 17.42 78.38
400 100 5.06 65.32
400 300 2.34 60.20

800 0 20.38 79.71
800 100 6.87 67.21
800 300 3.14 62.88

1600 0 26.43 82.43
1600 100 6.26 67.37
1600 300 4.11 64.66

� All scores are based on 10,000 CAPTCHAs
(sentences), corresponding to 90,140 words.

Listening test results:

Sent. [%] Word [%]

µ 56.38 91.74
σ 21.47 7.18

T60 = 100 ms

Sent. [%] Word [%]

µ 37.81 86.88
σ 17.65 7.90

T60 = 300 ms

� The results were obtained from
16 individual participants for
each reverberation time.

� The scores correspond to 800
CAPTCHAs (sentences) and
7,280 words.
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Conclusions

reCAPTCHA vs. Proposed Scheme:

ASR Human

Proposed CAPTCHA (T60 = 100 ms) 5.33 % 56.38 %
reCAPTCHA (as of March 2014) 62.8 % 24.40 %

26



Conclusions

� Conservative CAPTCHAs can potentially be learned by machines at a
relatively low cost.

� Increased CAPTCHA security (using signal distortions) comes at the
cost of lower human pass rates.
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can not be achieved by using conventional methods.
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Conclusions

� Conservative CAPTCHAs can potentially be learned by machines at a
relatively low cost.

� Increased CAPTCHA security (using signal distortions) comes at the
cost of lower human pass rates.

� We assume that the theoretical sweet-spot, i.e.,
• high success rates for humans (≥ 90%),
• low success rates for machines (≤ 1% or even ≤ 0.01%).

can not be achieved by using conventional methods.

� It is necessary to investigate into more sophisticated CAPTCHAs, e.g.,
• CAPTCHAs that are based on context-dependent questions,

requiring intelligence and/or previous knowledge .
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Thank you!
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Thank you!

Questions?
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Winograd Schemas

Example 1:

Question: The trophy doesn’t fit into the brown suitcase because it’s
too [small/large]. What is too [small/large]?

Answer: The [suitcase/the trophy].
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Winograd Schemas

Example 1:

Question: The trophy doesn’t fit into the brown suitcase because it’s
too [small/large]. What is too [small/large]?

Answer: The [suitcase/the trophy].

Example 2:

Questions: The man couldn’t lift his son because he was so
[weak/heavy]. Who was [weak/heavy]?

Answer: The [man/the son].
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Creating Digit Blocks
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Metrics

Word Acc. = 100 ·
W −WD −WI −WS

W
,

Sent. Acc. = 100 ·
SC

S
,

W : Number of words
WD: Word deletions
WI : Word insertions
WS : Word substitutions
S: Number of sentences

SC : Number of correctly transcribed sentences
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General Task

32



Introduction of Hidden Markov Models

1 2 3

b1(O)

a21 a33

a12 a23

b2(O) b3(O)

Example of an HMM

aij : state transition probabilities
bj : output probabilities
o: observations (features)
πj : initial state probabilities

� The HMM consists of states and links.
• Each link allows a transition between two states.
• An observation is generated with a stochastic transition from one

state to another.
• Each observation o is one of the symbols in V = {v1 . . . vK}

� The complete HMM is defined by the parameter set λ = (A,B,Π).
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The Three Basic Problems for HMMs

1. Given the observation sequence O = o1 o2 . . .oT and the model λ,
how to compute

P (O|λ) ?

2. Given the observation sequence O = o1 o2 . . .oT and the model λ,
how to choose a corresponding state sequence Q = q1q2 · · · qT , i.e.,

Q∗ = argmax
Q

P (Q|O, λ)

that best explains the observations? → “Recognition”

3. How to adjust λ = (A,B,Π) to maximize P (O|λ) (maximum likelihood
estimation)? → “Training”

λML = argmax
λ

P(O|λ)

34



Problem 1 - Computation of P (O|λ)

� Naive approach: enumerate every possible state sequence

P (O|Q, λ) =

T
∏

t=1

P (ot|qt, λ) (statistical independent observations)

= bq1(o1)bq2(o2) · · · bqT (oT )

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT

P (O|λ) =
∑

∀Q

P (O|Q, λ)P (Q|λ)

=
∑

q1,q2,...,qT

πq1bq1(o1)aq1q2bq2(o2) · · · aqT−1qT bqT (oT )

� Computational infeasible due to 2TNT calculations.
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Problem 1 - Computation of P (O|λ)

� More efficient approach: forward-backward procedure

αt(i) = P (o1o2 · · ·ot, qt = Si|λ) (forward variables)

1. Initialization

α1(i) = πibi(o1), 1 ≤ i ≤ N

2. Recursion

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

3. Termination

P (O|λ) =
N
∑

i=1

αT (i) (terminal forward variables)

� N2T calculations, rather than 2TNT as for the naive approach.
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Problem 1 - Computation of P (O|λ)

� Backward procedure:

βt(i) = P (ot+1ot+2 · · ·oT , qt = Si|λ) (backward variables)

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N

2. Recursion

βt(i) =

N
∑

j=1

aijbj(ot+1)βt+1(j), t = T − 1, . . . , 1, 1 ≤ i ≤ N

� N2T calculations

37



Problem 2 - Optimal State Sequence
� Find Q∗ = argmax

Q
P (Q|O, λ).

� Maximize the expected number of correct individual states.
� Probability of being in state Si at time t, given O and λ:

γt(i) = P (qt = Si|O, λ)

=
αt(i)βt(i)

P (O|λ)

=
αt(i)βt(i)

∑N
i=1

αt(i)βt(i)
,

(

N
∑

i=1

γt(i) = 1

)

� The most likely state q∗t at time t is then given by

q∗t = argmax
1≤i≤N

{γt(i)} , 1 ≤ t ≤ T.

� How to find the single best state sequence?
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Viterbi Algorithm
� Note that Q∗ = argmax

Q
P (Q|O, λ) = argmax

Q
P (Q,O|λ)

� Define a score along a single path at time t that ends in state Si:

δt(i) = max
q1,q2,...,qt−1

P (q1q2 . . . qt = i,o1o2 . . .ot|λ)

1. Initialization (1 ≤ i ≤ N ):

δ1(i) = πibi(o1) Ψ1(i) = 0

2. Recursion (2 ≤ t ≤ T, 1 ≤ j ≤ N ):

δt(j) =
(

max
i=1...N

δt−1(i)aij

)

bj(ot) Ψt(j) = argmax
i=1...N

δt−1aij

3. Termination:

P ∗(o1 . . .oT |λ) = max
i=1...N

δT (i) q∗T = argmax
i=1...N

δT (i)

4. Path backtracking: q∗t = Ψt+1(q
∗
t+1), t = T − 1, · · · , 1.
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Problem 3 - Adjust the Model Parameters λ

� There is no known way to analytically solve for the model, which
maximizes the probability of the observation sequence.

� Choose λ = (A,B,Π) such that P (O|λ) is (locally) maximized.

Expectation maximization (EM) algorithm

� General method (not only for HMMs).
� Start with some λ0.
� Iteratively compute:

1. F (λ, λt−1) := EQ

[

logP (O, Q|λ) |O, λt−1
]

(E-step)
2. λt = argmaxλF (λ, λt−1) (M-step)

� An increase of F provably increases the likelihood P (O|λ).
� Provably converges to a local maximum of P (O|λ).
� For estimating HMM parameters, an instance of the EM algorithm is

used, namely the Baum-Welch algorithm.
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Baum-Welch Algorithm
� Probability of being in state Si at time t, state Sj at time t+ 1, given O and λ:

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
=

αt(i)aijbj(Ot+1)βt+1(j)
∑N

i=1

∑N

j=1
αt(i)aijbj(Ot+1)βt+1(j)

� Express γt(i) in terms of ξt(i, j):

γt(i) =
N
∑

j=1

ξt(i, j)

Reestimation formulae:

âij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

b̂j(k) =

T
∑

t=1
s.t.ot=vk

γt(j)

T
∑

t=1

γt(j)

π̂i = γ1(i)

41



Baum-Welch Algorithm

âij =
expected # of transitions from state Si to Sj

expected # of transitions from state Si

b̂j(k) =
expected # of times being in state Sj and observing symbol vk

expected # of times being in state Sj

π̂i = expected # of times being in state Si at time t = 1

42



Using HMMs for Speech Recognition

� Represent each word or phoneme by an individual HMM.

� A common model topology is a left-to-right model (possibly with skips).

� The output probabilities bq(o) are modeled by using continuous density
multivariate distributions, e.g., Gaussian mixture models (GMMs):

bq(o) =

K
∑

κ=1

cκ,qN (o|µκ,q,Σκ,q), (1)

K
∑

κ=1

cκ,q = 1 ∀q. (2)
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Extracting Feature Vectors

1. Segmentation of the input signal into
(overlapping) frames

• Typical frame lengths ≈ 25 ms
• Overlap between

frames ≈ 50–75 %

2. Extraction of features for each frame,
e.g.,

• Mel Frequency Cepstral
Coefficients (MFCC),

• Perceptual Linear Prediction
(PLP),

• Considering dynamics by
incorporating 1st and 2nd order
derivatives (∆, ∆∆).
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Feature Extraction (MFCCs)

1. Compute the short-time Fourier transform (STFT) for each frame:

X(m,n) =
L−1
∑

i=0

x(mR+ i)h(i)e−j 2πi

L
n

2. Warp spectral components onto the Mel scale:

3. Apply the discrete cosine transform to the log-Mel spectrum:

X̃(m, c) =

L′
−1

∑

m=0

ln
(

X̂(m,m)
)

cos

[

π

L′

(

m+
1

2

)

c

]

.

4. Observation vector: ot =
[

X̃(m, 0) X̃(m, 1) · · · X̃(m,L′ − 1)
]T

.
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Training using Sentences

� Reestimation algorithm, e.g., Baum-Welch, remains unchanged by
using sentences, i.e., sequences of words, for training.

1. For training, the corresponding transcriptions for each sentence
(“labels”) have to be known.

2. The respective models for each sentence are concatenated,
which results in a larger HMM.

3. The resulting larger HMM is trained by using the Baum-Welch
reestimation procedure.
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Recognition of Continuous Speech
� Combine individual word models into compound HMM.

• Adjust the compound HMM to the underlying grammar, e.g.:
<“one” or “two” or “three” or ... or “silence”>
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