
Tripwire: Pioneering Integrity Scanning for Cybersecurity
Eugene H. Spafford

spaf@purdue.edu

Purdue University

West-Lafayette, IN, USA

CCS CONCEPTS
• Security and privacy → File system security; Operating
systems security; Intrusion detection systems; Symmetric cryp-
tography and hash functions.

ACM Reference Format:
Eugene H. Spafford. 2022. Tripwire: Pioneering Integrity Scanning for Cy-

bersecurity. In ACSAC 2022, Dec 5–9, 2022, Austin, TX. ACM, New York, NY,

USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 BACKGROUND
In 1990 there was no Internet as we now know it. The proto-Internet

(the NSFNet and regional networks) that existed at that time did not

allow commercial traffic and was mostly composed of government

and academic sites. The predominant operating system was unix,

in its many variations. The majority of computers connected to the

NSFnet and related were high-end workstations (e.g., Sun Microsys-

tems and Vaxstations) and minicomputers, with some mainframes

connected. What PC-type computers were in use ran primarily

MS-DOS or classic Mac OS.

At this time there was no significant vendor community for

security add-ons outside of some specialized mainframe systems.

There was a growing market for some small anti-virus companies,

but they were mostly focused on products for MS-DOS. There were

some freeware tools in circulation for unix, such as the recently-

released COPS package.[2]

However, there was growing concern over security. Computer

virus incidents for PC-class computers were effectively doubling

every year. There was a growing presence of intrusions into systems

by various parties, known and unknown. Proof of concept viruses

were known for unix systems[1, 11] and it was believed to be a

matter of time before they appeared “in the wild.” The Internet

Worm and Wank Worm,[9, 16] along with the intrusions described

in the Cuckoo’s Egg[17] in prior years had also raised concern about

network-based threats.

A series of stealthy intrusions occurred in early 1991, later docu-

mented in the book At Large[10], primarily targeting Sun comput-

ers. Spafford discovered that set of intrusions on his early honeypot

systems. They were notable for not triggering any of the intrusion

alarms then available. The intrusion and subsequent installation

of a “backdoor” was done in a manner that circumvented the CRC

check used in tools such as COPS and common to patch notices

from vendors such as Sun Microsystems and the CERT/CC. The

attacks were carried out through flaws in the software and then

installed backdoor code in the shared libraries. Those files were

altered so that the date/time of modification appeared unchanged,

and the contents adjusted to match the previous CRC checksum.

ACSAC 22, Dec 5–9, 2022, Austin, TX
2022. ACM ISBN . . . $

https://doi.org/XXXXXXX.XXXXXXX

Spafford realized that a more reliable means of integrity verifi-

cation was necessary. He sketched out the design of a system that

used multiple message digest function values stored in a database,

along with a record of i-node values. Initial functions were chosen

from different hash families to avoid the possibility of common

vulnerabilities. Kim was a talented undergrad student at the time

who was seeking a project, and Spafford tasked him with writing

the code.

The Tripwire tool was designed to monitor files and directories

on a unix system for changes that could come from unauthorized

modifications, software failures, malware, or intrusions. Over time,

a number of other uses were also identified, including verifying

updates and ensuring consistency with a baseline.

One inspiration for the design involved the placement of trap or
tripwire files to expose snooping intruders.1 This had proven highly

effective in Spafford’s firewall and bait systems.
2
If the system is

properly configured, security administrators could learn when an

intruder or local “snooping” user has accessed the trapped files, thus

unavoidably updating the file’s timestamp. The Tripwire program

would report this.

2 THE ARTIFACT
On November 2, 1992, the initial Tripwire tool was released to

one hundred beta test sites around the world, and therefter to a

wider audience. Several bugs were identified, and four updates

were released in 1993. In December 1993, the first formal release of

Tripwire was made.

The original tool was written in C, with configuration being

adaptable for different versions of Unix. Because of the heteroge-

neous nature of computer equipment at most sites, the design of

Tripwire emphasized program and database portability. The code

was written in the standard K&R C programming language,[5] ad-

hering to POSIX standards wherever possible. The result was a

program that compiled and ran on at least 28 BSD and System-V

variants of unix, including Xenix and Unicos. All the early releases

were developed in a cleanroom style,[13] with Gene Kim doing

the development, and Spaf running the acceptance testing. The

development environment at Purdue enabled the initial release to

be adjusted to run under versions on unix on (at least) Sun 3, Sun 4,

DEC VAX with BSD, AT&T 3B20, Ridge, Pyramid, and Sequent

machines.
3

The release included a comprehensive self-test suite to ensure

that it was properly generating message digests, capturing i-node

information, and reporting changes. The test suite was also portable

1
Hence the original motivation for the name “Tripwire.”

2
There was never a formal publication about these systems, but I did blog about them

several years later: https://www.cerias.purdue.edu/site/blog/2011/07/

3
The unix environment was rich with different implementations and approaches at the

time, which provided many benefits but also posed significant issues when attempting

to write portable software—much more so than today.

https://orcid.org/0000-0002-5555-8330
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACSAC 22, Dec 5–9, 2022, Austin, TX Eugene H. Spafford

file/dir selection-mask
/etc R # all files under /etc
@@ifhost solaria.cs.purdue.edu
!/etc/lp # except for SVR4 printer logs

@@endif
/etc/passwd R+12 # you can't be too careful
/etc/mtab L # dynamic files
/etc/motd L
/etc/utmp L
=/var/tmp R # only the directory, not its contents

Figure 1: An excerpt from an example tw.config file

to all of the supported systems. A set of template configuration files

were also included, as was extensive documentation.

Tripwire was operated by initially generating a database based

on directives in a configuration file. The configuration (tw.config)
was a structured ASCII text file. This file was designed so it could be

edited by the security administrator to indicate files and directories

to be monitored, and the type of monitoring to conduct. Flags could

be set to indicate whether items were allowed to be deleted or

altered, and directories were marked as to whether new files could

be created within them without sounding an alarm. There was an

included macro language that allowed users to create template files

that were expanded into the full configuration files, thus simplifying

the installation at some sites.
4

The tw.config file contained the names of files and directories

with an associated selection-mask. A selection-maskmight look like:

+pinugsm12-a. Flags were added (“+”) or deleted (“-”) from the set of

items to be examined. Tripwire interpreted this as, “Report changes

in permission and modes, inode number, number of links, user id,

group id, size of the file, modification timestamp, and signatures 1

and 2. Disregard changes to access timestamp.” (See Figure 1.)

A flag existed for every distinct field stored in an inode.

To support the various typical files on target systems, the

distribution had some standard macros for use in configuration

files:

read-only files Only the access timestamp is ignored.

log files Changes to the file size, access and modification

timestamp, and signatures are ignored.

growing log files Changes to the access and modification

timestamp, and signatures are ignored. Increasing file sizes

are ignored.

ignore nothing self-explanatory

ignore everything self-explanatory

When the program was run for the first time it would create a

database of every scanned object, with the discovered (or calculated)

values as indicated in the configuration file. This included digital

hash values of files specified in the configuration, file permissions,

modification dates, and existence. Information was also collected

about directories and their properties.

Thereafter, the program could be run in check mode to compare

current values against the archived values. Files that had changed in

any way were reported. Directories that had changed attributes or

4
This was a user-contributed feature developed during the beta test phase.

contents were also reported. In this manner any alteration—whether

benign or not—was flagged for operator investigation.

The database file was also a human-readable text file. This not

only provided an alternate means of checking the database for po-

tential tampering (e.g., comparison against a printed copy), but it

allowed users to verify properties of individual files. The Tripwire

distribution included a stand-alone program, siggen, that gener-
ated signatures for the files specified on the command line. This

tool provides a convenient means of generating any of the included

signatures for any file.

To allow the possible use of Tripwire at sites consisting of a

large number of machines, the design allowed for configuration

and database files not residing on the monitored machines. Input

could be read from file descriptors, open at the time of Tripwire

invocation. The file descriptors could be connected to unix pipes

or network connections. Thus, a remote server or a local program

could supply the files. Furthermore, the use of unix-style pipes also

allowed for outside programs to supply encryption and compression

services, should the administrator wish.

The advice given with the documentation was for system ad-

ministrators to consider putting the configuration file, generated

database, and executable program all on read-only media, or on me-

dia only mounted during single-user operation. These approaches

would prevent any intruder from modifying any of those files to

circumvent the scans. We were told that these restrictive uses were

employed in some highly-sensitive government applications. How-

ever, most users chose to store the files on the regular file system,

albeit with highest protection, sometimes including ACLs. This

seemed to work well, as we received no credible reports of attack

circumvention until well after 2000.
5

Versions of Tripwire were released that used the MD2–MD5[14,

15] family of message digest algorithms, and the 4-pass SNEFRU[12]

digest. Later, the 128-bit HAVAL[18] and NIST SHA algorithmswere

added. The original defaults were to use MD5 and SNEFRU. Trip-

wire also included POSIX 1003.2 compliant CRC-32 and CCITT

compliant CRC-16 signatures. The intent was to provide multiple

algorithms from different “families” to avoid there being any possi-

bility of a weakness found in a single algorithm that would defeat

the check. This was configurable by the users to trade-off CPU

usage vs. greater confidence in the result.

5
This is anecdotal evidence; successful attacks may have occurred earlier that were

not reported to us.

Tripwire: Pioneering Integrity Scanning for Cybersecurity ACSAC 22, Dec 5–9, 2022, Austin, TX

3 RELEASE
Tripwire was published in source code form to several Usenet

security-related newsgroups and also announced to several security

mailing lists. (This was before theWWWwas developed.). The code

was under a modified BSD software license that allowed free use

for non-commercial purposes.

The source code was provided in the Usenet postings and was

available for download from the host ftp.cs.purdue.edu. It was
later hosted at the COAST

6
ftp site, and a copy was available via the

CERIAS
7
archive of COAST at http://ftp.cerias.purdue.edu/pub/

tools/unix/ids/tripwire/ for nearly 20 years, although it was

not maintained after about the year 2000.

There were bug fixes and enhancements made to the tool set

from 1992-1996, with subsequent releases made in the same manner

as the original. The tool was supported by Gene Kim these years

after its release. In 1997, Gene Kim and Wyatt Starnes formed the

company Tripwire to develop and market an expanded, commercial

version of the program that included a version for Windows.

In 2012, the Tripwire company donated a version of the then-

current program to the open source community, where it may still

be found (https://github.com/Tripwire/tripwire-open-source).
The version on the Purdue ftp sites was withdrawn as it was no

longer current or being supported, and visitors were directed to the

open source version hosted by the Tripwire company.

Tripwire was extensively described in several published papers

in 1994, included at ACM CCS[6], SANS[7], and the Usenix Appli-

cation Developers conference[8]. It was also described in the first

and second editions of [3, 4].

4 IMPACT
Tripwire was (and is) incredibly widely used. As the first free

publicly-available intrusion detection tool, and the first integrity

monitoring tool, it enjoyed great success and interest.We saw down-

load numbers in the thousands over the first year after its release,

and based on sharing in other venues it was likely used by tens

of thousands. Subsequent releases saw even larger adoption. For

several years it was recommended by major CIRT teams, several

vendors, and present in all the common repositories.

Users from around the world contributed extensions and porting

information for other versions of Unix. The README and documen-

tation were translated into several languages other than English.

At one time in the mid 1990s we counted over two dozen alternate

hosting sites.

The three published papers (including the Purdue tech report

versions) have been cited 1155 times according to Google Scholar.

After Gene Kim graduated and went to grad school, he continued

to get requests for technical support of Tripwire. One commercial

user paid Purdue University a license fee and a fee to GeneK so

they could use it to certify machines on Wall Street as not being

modified between trading days. This was proposed to the federal

regulator as a means of showing immutability of the running code,

6
COASTwas the Computer Operations, Audit, and Security Technologies lab at Purdue,

run by Spafford, 1992–1998.

7
CERIAS is the successor to COAST, also started by Spafford in 1998, and about to

celebrate its 25th anniversary.

and the regulator accepted it—and then recommended it to other

trading firms.

We had reports of Tripwire finding otherwise-unnoticed intru-

sions, as we expected. We also received reports of unexpected uses:

• Tripwire flagged multiple instances of file changes caused

by hardware failures at sites (e.g., disk issues) and software

glitches. These were otherwise unnoticed by the system

administrators.

• In later years, network shares for PC-class machines were

monitored by Tripwire, and this resulted in discovery of

malware on those shares.

• The most common report we received was discovery of unau-

thorized or unannounced system changes occurring in envi-

ronments where more than one person had ability to make

changes.

• The portability of the configuration and database files, and

the ability to use them from remote shares or network con-

nections, resulted in Tripwire being used to validate installa-

tions of software on multiple machines.

• Weheard several stories where tripwire files were established,
as per our original intent, which were used to detect insiders

snooping into files and directories where they had no reason

to explore. At least one such use was related to us as a trigger

that uncovered insider-perpetrated fraud.

This author (Spafford) recalls visiting high-sensitivity govern-

ment sites and corporations in the early 1990s where Tripwire

was a primary security tool being used on critical servers. This

included machines at the CIA, the Executive Office of the President,

STRATCOM, and several major corporations. These uses were not

documented in the open literature, to our knowledge, but corre-

spondence with the operators in these locations—and some on-site

visits—were part of our personal history with the tool.

In 1997, Gene Kim and partner Wyatt Starnes licensed the Trip-

wire brand and software from Purdue and formed the Tripwire

company in Portland, Oregon. The company has gone on to be-

come one of the leading security application vendors in the world,

with many tens (or hundreds) of thousands of paying customers.

As a nod to the origins of Tripwire, the company donated a re-

fined rewrite of the code to the open source community where it is

maintained and still available.

In the mid 1990s, Mark Pollit of the FBI Laboratory consulted

with Spafford about the use of the message digests in Tripwire.

This resulted in the creation of a national reference database of

signatures for known child pornography. This database is still in

use as a quick, relatively less-intrusive method of searching file

systems of confiscated computers for prohibited content.

In 2004, Wyatt Starnes left Tripwire and founded Signacert. The

company was based around the core concept of Tripwire: the data-

base of message digests. Signacert was collecting digests of all

authorized releases and patches of widely-used software, to be used

in a product to scan systems for known and unknown software.

Signacert was acquired by Harris corporation in 2010. In 2014, Wy-

att died suddenly and Signacert was sold to private investors; it is

not currently operating.

ACSAC 22, Dec 5–9, 2022, Austin, TX Eugene H. Spafford

Several modern IDS systems and malware detection systems

have adopted the message digest concept pioneered in Tripwire for

their own products.

Gene Kim left Tripwire in 2010 and has been an award-winning

author and advocate for Visible Ops and DevSecOps methodologies

over the last dozen years. Spafford has continued as a professor at

Purdue University.

Tripwire was, to our knowledge, the first integrity monitoring

tool for general-purpose computing systems. It remains a canonical

example of that functionality.

REFERENCES
[1] Tom Duff. 1989. Experiences with Viruses on UNIX Systems. Computing Systems

2, 2 (spring 1989), 155–171.

[2] Daniel Farmer and Eugene H. Spafford. 1990. The COPS Security Checker System.

In Proceedings of the Summer Conference. Usenix Association, Usenix Association,
Berkeley, CA, 165–190.

[3] Simson Garfinkel and Gene Spafford. 1991. Practical Unix Security. O’Reilly &

Associates, Inc., Sebastopol, CA.

[4] Simson Garfinkel and Gene Spafford. 1996. Practical Unix & Internet Security.
O’Reilly & Associates, Inc., Sebastopol, CA.

[5] Brian W. Kernighan and Dennis M. Ritchie. 1978. The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ.

[6] Gene H. Kim and Eugene H. Spafford. 1994. The Design and Implementation

of Tripwire: A File System Integrity Checker. In Proceedings of the 2nd ACM

Conference on Computer and Communications Security. ACM, ACM Press, NYC,

NY, 18–29.

[7] Gene H. Kim and Eugene H. Spafford. 1994. Experiences with Tripwire: Using

Integrity Checkers for Intrusion Detection. In Systems Administration, Networking
and Security Conference III. Usenix Association, Berkeley, CA, 7 pages.

[8] Gene H. Kim and Eugene H. Spafford. 1994. Writing, Supporting, and Evaluat-

ing Tripwire: A Publicly Available Security Tool. In Proceedings of the Usenix
Applications Development Symposium. Usenix Association, Berkeley, CA, 89–97.

[9] Thomas A. Longstaff and E. Eugene Schultz. 1993. Beyond preliminary analysis

of the WANK and OILZ worms: a case study of malicious code. Computers &
Security 12, 1 (1993), 61–77. https://doi.org/10.1016/0167-4048(93)90013-U

[10] Charles C. Mann and David H. Freedman. 1997. At Large: the Strange Case of the
World’s Biggest Internet Invasion. Simon & Schuster, NYC, NY.

[11] M. Douglas McIlroy. 1989. Virology 101. Computing Systems 2, 2 (spring 1989),
155–181.

[12] Ralph C. Merkle. 1990. A fast software one-way hash function. Journal of
Cryptology 3, 1 (1990), 43–58.

[13] H. D. Mills, M. Dyer, and R. C. Linger. 1987. Cleanroom Software Engineering.

IEEE Softw. 4, 5 (sep 1987), 19–25. https://doi.org/10.1109/MS.1987.231413

[14] R. L. Rivest. 1991. The MD4 message digest algorithm. In Advances in Cryptology
— Crypto ’90. Springer Berlin, Heidelberg, 303–311.

[15] R. L. Rivest. 1992. RFC 1321: The MD5 Message-Digest Algorithm. Technical

Report. Internet Activities Board.

[16] E. H. Spafford. 1989. Crisis and Aftermath. Commun. ACM 32, 6 (jun 1989),

678–687. https://doi.org/10.1145/63526.63527

[17] C Stoll. 1989. The Cuckoo’s Egg. Doubleday, NYC, US.
[18] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. 1992. HAVAL—a one-way

hashing algorithmwith variable length of output. In International workshop on the
theory and application of cryptographic techniques. Springer Berlin, Heidelberg,
81–104.

https://doi.org/10.1016/0167-4048(93)90013-U
https://doi.org/10.1109/MS.1987.231413
https://doi.org/10.1145/63526.63527

	1 Background
	2 The Artifact
	3 Release
	4 Impact
	References

