
User Authentication and Authorization in the JavaTM Platform

Charlie Lai Li Gong

Sun Microsystems, Inc.
charlie.lai,li.gong@sun.com

Larry Koved Anthony Nadalin

International Business Machines, Inc.
koved,drsecure@us.ibm.com

Roland Schemers

onebox.com
schemers@onebox.com

Abstract

JavaTM security technology originally focused on creat-
ing a safe environment in which to run potentially untrusted
code downloaded from the public network. With the latest
release of the JavaTM Platform (the JavaTM 2 Software De-
velopment Kit, v 1.2), fine-grained access controls can be
placed upon critical resources with regard to the identity
of the running applets and applications, which are distin-
guished by where the code came from and who signed it.
However, the Java platform still lacks the means to enforce
access controls based on the identity of the user who runs
the code. In this paper, we describe the design and imple-
mentation of theJavaTM Authentication and Authorization
Service (JAAS), a framework and programming interface
that augments the JavaTM platform with both user-based au-
thentication and access control capabilities.

1 Introduction

The JavaTM technology [8, 12] emerged in 1995 with a
prominently stated goal of providing a safe programming
environment. This means that Java security must provide a
secure, readily-built platform on which to run Java enabled
applications. It also means that Java security must provide
adequate and extensive security tools and services imple-
mented in Java technology that enable independent software
vendors (ISVs) to build a wider range of security-sensitive
applications, for example, in the enterprise world.

The latest release of the Java platform (Java 2) introduces
a new security architecture [7] that uses a security policy
to decide the granting of individual access permissions to
running code (according to the code’s characteristics, e.g.,
where the code is coming from and whether it is digitally
signed and if so by whom). Future attempts to access pro-
tected resources will invoke security checks that compare
the granted permissions with the permissions needed for the
attempted access. If the former includes the latter, access is
permitted; otherwise, access is denied.

Such a code-centric style of access control is unusual in
that traditional security measures, most commonly found
in sophisticated operating systems, are user-centric in that
they apply control on the basis of who is running an appli-
cation and not on the basis of which application is running.
One major rationale behind code-centric access control is
that when a user uses a web browser to surf the net and
runs executable content (e.g., mobile code written in Java)
as needed, the user variable remains essentially constant.
On the other hand, the user may trust one piece of mobile
code more than others and would like to run this code with
more privileges. Thus it is in fact natural to control the se-
curity of mobile code in a code-centric style.

Nevertheless, it is obvious that Java is becoming widely
used in a multi-user environment. For example, an enter-
prise application or a public Internet terminal must deal
with different users, either concurrently or sequentially, and
must grant these users different privileges based on their
identities. The Java Authentication and Authorization Ser-
vice (JAAS) is designed to provide a framework and stan-
dard programming interface for authenticating users and for
assigning privileges. Together with Java 2, an application
can provide code-centric access control, user-centric access
control, or a combination of both.

The rest of the paper is organized as follows. Sections 2
and 3 introduce the basic concepts used by JAAS. Section 4
describes the authentication model implemented by JAAS.
Section 5 describes the authorization framework for JAAS,
and is broken up into several subsections. Section 5.1 de-
fines the JAAS user-based security policy, Section 5.2 cov-
ers the JAAS access control implementation, and Section
5.3 discusses scalability issues regarding the security pol-
icy. Section 6 discusses the issue of logging into the Java
virtual machine. Section 7 follows with a summary.

2 Subjects and Principals

Users often depend on computing services to assist
them in performing work. Furthermore services themselves
might subsequently interact with other services. JAAS uses



the term,subject, to refer to any user of a computing service
[9, 17]. Both users and computing services, therefore, rep-
resent subjects. To identify the subjects with which it inter-
acts, a computing service typically relies on names. How-
ever, subjects might not have the same name for each ser-
vice and, in fact, may even have a different name for each
individual service. The term,principal, represents a name
associated with a subject [11, 17]. Since subjects may have
multiple names (potentially one for each service with which
it interacts), a subject comprises a set of principals. See Fig-
ure 1.

public interface Principalf
public String getName();

g

public final class Subjectf
public Set getPrincipals()fg

g

Figure 1. Subject Class and Principals

Principals can become associated with a subject upon
successful authentication to a service. Authentication repre-
sents the process by which one subject verifies the identity
of another, and must be performed in a secure fashion; oth-
erwise a perpetrator may impersonate others to gain access
to a system. Authentication typically involves the subject
demonstrating some form of evidence to prove its identity.
Such evidence may be information only the subject would
likely know or have (a password or fingerprint), or it may
be information only the subject could produce (signed data
using a private key).

A service’s reliance on named principals usually derives
from the fact that it implements a conventional access con-
trol model of security [10]. This model allows a service
to define a set of protected resources as well as the condi-
tions under which named principals may access those re-
sources. Recent studies (PolicyMaker [4] and SPKI [5])
have focused on the limitations of using conventional names
in large distributed systems for access control, and note that
public keys, instead, provide a more practical and scalable
name representation. JAAS, and SPKI as well, do not im-
pose any restrictions on principal names. Localized envi-
ronments that have limited namespaces, or that do not rely
on public key cryptography, may define principals that have
conventional names. Large-scale distributed systems may
use principals that allow the principal name to be a public
key (encoded as a hex string, as in PolicyMaker).

3 Credentials

Some services may want to associate other security-
related attributes and data with a subject in addition to prin-

cipals. JAAS refers to such generic security-related at-
tributes ascredentials. A credential may contain informa-
tion used to authenticate the subject to new services. Such
credentials include passwords, Kerberos tickets [16], and
public key certificates (X.509 [9], PGP [21], etc.), and are
used in environments that support single sign-on. Creden-
tials might also contain data that simply enables the sub-
ject to perform certain activities. Cryptographic keys, for
example, represent credentials that enable the subject to
sign or encrypt data. JAAS credentials may be any type
of object. Therefore, existing credential implementations
(java.security.cert.Certificate, for example) can be easily in-
corporated into JAAS. Third-party credential implementa-
tions may also be plugged into the JAAS framework.

JAAS credential implementations do not necessarily
have to contain the actual security-related data; they might
simply reference the data. This occurs when the data must
physically reside on a separate server, or even possibly in
hardware (private keys on a smart card, for instance). Also,
JAAS does not impose any restrictions regarding credential
delegation to third parties. Rather it allows each creden-
tial implementation to specify its own delegation protocol
(as Kerberos does), or leaves delegation decisions up to the
applications.

JAAS divides each subject’s credentials into two sets.
One set contains the subject’s public credentials (public key
certificates, Kerberos tickets, etc). The second set stores the
subject’s private credentials (private keys, encryption keys,
passwords, etc). To access a subject’s public credentials,
no permissions are required. However, access to a subject’s
private credential set is security checked. See Figure 2.

public final class Subjectf
...
// not security checked
public Set getPublicCredentials()fg

// security checked
public Set getPrivateCredentials()fg

g

Figure 2. Subject Class and Credentials

4 Pluggable and Stackable Authentication

Depending on the security parameters of a particular ser-
vice, different kinds of proof may be required for authen-
tication. The JAAS authentication framework is based on
PAM [18, 20], and therefore supports an architecture that
allows system administrators to plug in the appropriate au-
thentication services to meet their security requirements.
The architecture also enables applications to remain inde-
pendent from the underlying authentication services. Hence



as new authentication services become available or as cur-
rent services are updated, system administrators can easily
plug them in without having to modify or recompile exist-
ing applications.

The JAASLoginContextclass represents a Java imple-
mentation of the PAM framework. The LoginContext con-
sults a configuration that determines the authentication ser-
vice, orLoginModule, that gets plugged in under that appli-
cation (See Figure 3). The syntax and details of the config-
uration are defined by PAM.

public final class LoginContextf
public LoginContext(String name)fg
public void login()fg // two phase process
public void logout()fg

// get the authenticated subject
public Subject getSubject()fg

g

public interface LoginModulef
boolean login(); // first phase
boolean commit(); // second phase
boolean abort();
boolean logout();

g

Figure 3. LoginContext Class and LoginMod-
ule Interface

JAAS, like PAM, supports the notion of stacked Login-
Modules. To guarantee that either all LoginModules suc-
ceed or none succeed, the LoginContext performs the au-
thentication steps in two phases. In the first phase, or
the login phase, the LoginContext invokes the configured
LoginModules and instructs each to attempt the authentica-
tion only. If all the necessary LoginModules successfully
pass this phase, the LoginContext then enters the second
phase and invokes the configured LoginModules again, in-
structing each to formallycommit the authentication pro-
cess. During this phase each LoginModule associates the
relevant authenticated principals and credentials with the
subject. If either the first phase or the second phase fails, the
LoginContext invokes the configured LoginModules and in-
structs each toabort the entire authentication attempt. Each
LoginModule then cleans up any relevant state they had as-
sociated with the authentication attempt.

In addition to JAAS, the Generic Security Services Ap-
plication Programmer’s Interface (GSS-API) and Simple
Authentication and Security Layer Application Program-
mer’s Interface (SASL) [13, 14] define frameworks that pro-
vide support for pluggable authentication. However, the
GSS and SASL authentication frameworks are designed

specifically for network communication protocols and, as
such, provide additional support for securing network com-
munications after authentication has completed. While
JAAS does accommodate general network-based authenti-
cation protocols (including Needham-Schroeder and EKE
[15, 2]), it also focuses on addressing the need to support
pluggable authentication in stand-alone non-connection ori-
ented environments.

5 Authorization

Once authentication has successfully completed, JAAS
provides the ability to enforce access controls upon the prin-
cipals associated with the authenticated subject. The JAAS
principal-based access controls (access controls based on
who runs code) supplement the existing Java 2 codesource-
based access controls (access controls based on where code
came from and who signed it).

5.1 Principal-Based Access Control

As stated earlier, services typically implement the access
control model of security, which defines a set of protected
resources, as well as the conditions under which named
principals may access those resources. JAAS also follows
this model, and defines a security policy to specify what re-
sources are accessible to authorized principals. The JAAS
policy extends the existing default Java 2 security policy,
and in fact, the two policies, together, form a single logical
access control policy for the entire Java runtime.

Figure 4 depicts an example codesource-based policy en-
try currently supported by the default policy provided with
Java 2. This entry grants code loaded fromfoo.com, and
signed byfoo, permission to read all files in thecdromdi-
rectory and its subdirectories. Since no principal informa-
tion is included with this policy entry, the code will always
be able to read files from thecdromdirectory, regardless of
who executes it.

// Java 2 codesource-based policy
grant Codebase “http://foo.com”,

Signedby “foo”f
permission java.io.FilePermission

“/cdrom/-”, “read”;
g

Figure 4. Codesource-Based Policy Entry

Figure 5 depicts an example principal-based policy entry
supported by JAAS. This example entry grants code loaded
from bar.com, signed bybar, and executed byduke, per-
mission to read only those files located in the/cdrom/duke
directory. To be executed byduke, the subject affiliated with



the current access control context (see Section 5.2) must
have an associated principal of class,bar.Principal, whose
getNamemethod returns,duke. Note that if the code from
bar.com, signed bybar, ran stand-alone (it was not executed
by duke), or if the code was executed by any principal other
thanduke, then it would not be granted the FilePermission.
Also note that if the JAAS policy entry did not specify the
Codebase or Signedby information, then the entry’s FilePer-
mission would be granted to any code running asduke.

// JAAS principal-based policy
grant Codebase “http://bar.com”,

Signedby “bar”,
Principal bar.Principal “duke”f

permission java.io.FilePermission
“/cdrom/duke”, “read”;

g

Figure 5. Principal-Based Policy Entry

JAAS treats roles and groups simply as named principals
[10]. Therefore access control can be imposed upon roles
and groups just as they are with any other type of principal.
See Figure 6.

// an administrator role can access user passwords
grant Principal foo.Role “administrator”f

permission java.io.FilePermission
“/passwords/-”, “read, write”;

g

// a basketball team (group) can read its directory
grant Principal foo.Team “SlamDunk”f

permission java.io.FilePermission
“/teams/SlamDunk/-”, “read”;

g

Figure 6. Role-Based and Group-Based Policy
Entries

For flexibility, the JAAS policy also permits the Principal
class specified in a grant entry to be aPrincipalComparator
(the class implements the PrincipalComparator interface).
The permissions for such entries are granted to any subject
that the PrincipalComparatorimplies. See Figure 7.

Figure 7 demonstrates how PrincipalComparators can be
used to support role hierarchies [19]. In this example as-
sume that an administrator role is senior to a user role and,
as such, administrators inherit all the permissions granted
to regular users. To accommodate this hierarchy,bar.Role
must simply implement the PrincipalComparator interface,
and its implies method must return,true, if the provided
subject has an associated “administrator” role principal.

public interface PrincipalComparatorf
boolean implies(Subject subject);

g

// regular users can access a temporary
// working directory
grant Principal bar.Role “user”f

permission java.io.FilePermission
“/tmp/-”, “read, write”;

g

Figure 7. PrincipalComparator Interface and
Example Policy Entry

Note that although the JAAS policy supports role hierar-
chies via the PrincipalComparator interface, administrators
are not limited by it. JAAS can accommodate alternative
role-based access control mechanisms (such as that defined
in [6]), as long as the alternative access controls can be ex-
pressed either through the existing Java 2 policy or the new
JAAS policy.

5.2 Access Control Implementation

The Java 2 runtime enforces access controls via the
java.lang.SecurityManager, and is consulted any time un-
trusted code attempts to perform a sensitive operation (ac-
cesses to the local file system, for example). To determine
whether the code has sufficient permissions, the Securi-
tyManager implementation delegates responsibility to the
java.security.AccessController, which first obtains an im-
age of the currentAccessControlContext, and then ensures
that the retrieved AccessControlContext contains sufficient
permissions for the operation to be permitted.

JAAS supplements this architecture by providing the
method, Subject.doAs, to dynamically associate an au-
thenticated subject with the current AccessControlContext.
Hence, as subsequent access control checks are made, the
AccessController can base its decisions upon both the exe-
cuting code itself, and upon the principals associated with
the subject. See Figure 8.

public final class Subjectf
...
// associate the subject with the current
// AccessControlContext and execute the action
public static Object doAs

(Subject s,
java.security.PrivilegedAction action)fg

g

Figure 8. Subject doAs Method



To illustrate a usage scenario for the doAs method, con-
sider when a service authenticates a remote subject, and
then performs some work on behalf of that subject. For
security reasons, the server should run in an AccessControl-
Context bound by the subject’s permissions. Using JAAS,
the server can ensure this by preparing the work to be per-
formed as ajava.security.PrivilegedAction, and then by in-
voking the doAs method, providing both the authenticated
subject, as well as the prepared PrivilegedAction. The doAs
implementation associates the subject with the current Ac-
cessControlContext and then executes the action. When
security checks occur during execution, the Java 2 Secu-
rityManager queries the JAAS policy, updates the current
AccessControlContext with the permissions granted to the
subject and the executing codesource, and then performs its
regular permission checks. When the action finally com-
pletes, the doAs method simply removes the subject from
the current AccessControlContext, and returns the result
back to the caller.

To associate a subject with the current AccessControl-
Context, the doAs method uses an internal JAAS imple-
mentation of thejava.security.DomainCombinerinterface,
newly introduced in version 1.3 of the Java 2 SDK. It is
through the JAAS DomainCombiner that the existing Java
2 SecurityManager can be instructed to query the JAAS pol-
icy without requiring modifications to the SecurityManager
itself. Details of the interaction between the Java 2 Secu-
rityManager and DomainCombiners are documented in the
javadocs for the java.security.DomainCombiner interface.

5.3 Scalability of the Access Control Policy

The JAAS principal-based access control policy was
intentionally designed to be consistent with the existing
codesource-based policy in the Java 2 platform. The de-
fault policy implementations provided with both Java 2 and
JAAS reside in a local file, and assume that all policy de-
cisions can be defined and made locally. Obviously, this
design does not scale beyond small localized environments.
KeyNote [3] and SPKI both address the limitations of such
access control designs, and discuss alternative solutions that
enable the delegation of policy responsibilities to certified
3rd parties. By delegating policy-making responsibilities,
access control policies can easily scale to serve larger sys-
tems.

To improve scalability, both the Java 2 and JAAS file-
based policy implementations can be replaced with alter-
native implementations that support delegation. This is
achieved by specifying the alternative implementations in
the java.securityproperties file located in the lib/security
subdirectory from where the Java runtime environment was
installed. The designs of potential alternative implementa-
tions are beyond the scope of this paper.

6 Logging in to the Java Virtual Machine

With support from the JAAS framework, the Java virtual
machine (VM) can be augmented to provide a general login
facility for users. This would enable the VM itself to impose
access controls based on who logged in. In fact, [1] inves-
tigates and describes the constructs necessary to support a
multi-user environment within a VM. In such an environ-
ment, individual users log into the VM and are each given
an execution shell in which to launch commands and appli-
cations (similar to Unix). The VM imposes access controls
based on the identity of the user, and special UserPermis-
sions may be granted to code running as a particular user to
permit access to particular resources.

JAAS can serve as the underlying authentication archi-
tecture for such a system. Also, the environment described
in [1] focuses on user-based authentication and access con-
trol from the point of view of the Java virtual machine.
The JAAS framework supplements this environment by pro-
viding the support necessary for developers to build the
same user-based authentication and access control capabil-
ities into their own applications.

7 Summary and Future Directions

In this paper, we have outlined the design and implemen-
tation of theJavaTM Authentication and Authorization Ser-
vice (JAAS), a framework and programming interface that
augments the JavaTM platform with both pluggable authenti-
cation and principal-based access control capabilities, with-
out requiring modifications to the Java 2 core. Although
individual pluggable LoginModules can be written in na-
tive code, the basic JAAS framework can be written entirely
in Java. A prototype implementation of the framework has
been developed, and is currently packaged as a Java 2 stan-
dard extension consisting of approximately 25 classes par-
titioned into four packages.

As Java technology is used to construct not just a sin-
gle desktop but a full-fledged distributed system, a whole
new range of distributed systems security issues (such as
those we touched upon in the Introduction chapter) must be
tackled. For example, additional mechanisms are needed to
make RMI secure in the presence of hostile network attacks.
For Jini, service registration and location must be securely
managed if the environment contains coexisting but poten-
tially mutually hostile parties. There is a full set of higher-
level concepts and services that must be secured, such as
transactions for electronic commerce. There are also many
lower-level security protocols that we can leverage on, such
as the network security protocols Kerberos and IPv6. JAAS
is a critical building block for all these issues.



8 Acknowledgements

We are grateful to Bob Scheifler for his comments
and feedback on the JAAS architecture. We also thank
Bruce Rich, Kent Soper, Anat Sarig, Maryann Hondo,
and David Edelsohn for their work in helping to define
JAAS’ functional requirements, and for their assistance
in testing and documenting JAAS’ features. Whitfield
Diffie, Gary Ellison, Rosanna Lee, Jan Luehe, Peter Neu-
mann, Jeff Nisewanger, Jerome Saltzer, Fred Schneider,
Michael Schroeder, Scott Seligman, and Rob Weltman all
contributed to early JAAS designs. Maxine Erlund pro-
vided management support for the JAAS project. Sriramulu
Lakkaraju and Narendra Patil wrote product tests for JAAS.
Scott Hommel helped edit this paper.

References

[1] D. Balfanz and L. Gong. Experience with Secure Multi-
Processing in Java. InProceedings of ICDCS, May 1998.

[2] S. Bellovin and M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary At-
tacks. InProceedings of the IEEE Symposium on Research
in Security and Privacy, May 1992.

[3] M. Blaze, J. Feigenbaum, and A. Keromytis. Keynote: Trust
Management for Public-Key Infrastructures. InProceedings
of the Security Protocols International Workshop, 1998.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. InProceedings of the IEEE Conference on
Security and Privacy, May 1996.

[5] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI Certificate Theory. Internet
Engineering Task Force, November 1998. Internet Draft.

[6] L. Giuri and F. U. Bordoni. Role-Based Access Control in
Java. InProceedings of the 3rd ACM Workshop on Role-
Based Access Control, 1998.

[7] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going Beyond the Sandbox: An Overview of the New Se-
curity Architecture in the JavaTM Development Kit 1.2. In
Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, December 1997.

[8] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. Addison-Wesley, Menlo Park, California, August
1996.

[9] R. Housley, W. Ford, T. Polk, and D. Solo. Internet X.509
Public Key Infrastructure Certificate and CRL Profile. In-
ternet Engineering Task Force, January 1999. Request for
Comments 2459.

[10] B. Lampson. Protection.ACM Operating Systems Review,
8(1):18–24.

[11] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in Distributed Systems: Theory and Practice.
ACM Transactions on Computer Systems, 10(4):265–310.

[12] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication. Addison-Wesley, Menlo Park, California, 1997.

[13] J. Linn. Generic Security Service Application Program In-
terface, Version 2. Internet Engineering Task Force, January
1997. Request for Comments 2078.

[14] J. Myers. Simple Authentication and Security Layer
(SASL). Internet Engineering Task Force, October 1997.
Request for Comments 2222.

[15] R. M. Needham and M. D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers.Commu-
nications of the ACM, 21(12):993–999.

[16] B. C. Neuman and T. Ts’o. Kerberos: An Authentication
Service for Computer Networks. InIEEE Communications,
volume 39, pages 33–38.

[17] T. Ryutov and B. C. Neuman. Access Control Framework
for Distributed Applications. Internet Engineering Task
Force, November 1998. Internet Draft.

[18] V. Samar and C. Lai. Making Login Services Independent
from Authentication Technologies. InProceedings of the
SunSoft Developer’s Conference, March 1996.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models.IEEE Com-
puter, 29(2):38–47.

[20] www.opengroup.org. X/Open Single Sign-On Service
(XSSO) - Pluggable Authentication. InPreliminary Spec-
ification P702, June 1997.

[21] P. Zimmerman.PGP User’s Guide. MIT Press, Cambridge,
1994.


