Protecting Privacy in Key-Value Search Systems

Yinglian Xie

Michael K. Reiter

David O’Hallaron

Carnegie Mellon University
Email:{ylxie, reiter, droh} @cs.cmu.edu

Abstract

This paper investigates the general problem of efficiently
performing key-value search at untrusted servers without
loss of user privacy. Given key-value pairs from multiple
owners that are stored across untrusted servers, how can a
client efficiently search these pairs such that no server, on
its own, can reconstruct the key-value pairs?

We propose a system, called Peekaboo, that is applica-
ble and practical to any type of key-value search while pro-
tecting both data owner privacy and client privacy. The
main idea is to separate the key-value pairs across different
servers. Supported by access control and user authentica-
tion, Peekaboo allows search to be performed by only au-
thorized clients without reducing the level of user privacy.

1 Introduction

Wide area distributed systems often assume that hosts
from different administrative domains will collaborate with
each other (e.g., [20, 33]). With user data exposed to het-
erogeneous, third-party servers, one major challenge is to
store and find information without loss of privacy.

Consider a distributed service discovery system with
multiple independent service providers [7]. Each provider
stores service attributes, prices, and locations at one or
more directory servers. Clients submit service attributes
as queries to the directory servers, and obtain price and lo-
cation information as query results. This poses a signifi-
cant risk to the privacy of both the clients and the service
providers. A curious directory server could not only follow
a client’s queries and infer the client’s activities, but also
exploit the information stored by a service provider to in-
fer sensitive information such as the provider’s marketing
strategies and financial status.

As another example, consider a people location service
for ubiquitous computing environments (e.g., [13]). Al-
though there are many solutions (e.g., [17, 23]) to pre-
vent unauthorized access to user location information, few
of them tackle the problem of protecting user privacy with

respect to the servers, which may belong to different orga-
nizations and be untrusted to expose either data or queries.

3(\0“ !ﬁ

L\@\r 3 Data owner

Server pool

Client

Figure 1. A typical key-value search system

The question then is how can we efficiently search in-
formation while protecting the privacy of both data own-
ers and clients? Without loss of generality, in a key-value
search system illustrated in Figure 1, there are data owners,
clients, and a pool of servers. Data owners register their
data represented as key-value pairs at one or more servers.
Clients submit keys as queries and would like to retrieve all
the values that match the keys. In such a scenario, given
key-value pairs from multiple data owners that are stored
across untrusted servers, how can a client search keys for
values in such a way that no server, in isolation, can infer
what the client has queried and retrieved? Meanwhile, we
would like no server to be able to determine the key-value
bindings stored by any data owner. Figure 2 lists some con-
crete example key-value pairs in our everyday life.

Prior research on privacy-preserving search has largely
focused on providing strong security guarantees. They usu-
ally incur high overhead, or provide limited search func-
tionality or privacy that limits their real-world adoptabil-
ity. For example, PIR approaches (e.g., [5, 14]) can theo-
retically support key-value search under strong privacy, but
with high overhead that has precluded their use in prac-
tice. Encryption-based solutions (e.g., [30, 3]) allow clients
to search over encrypted data, but limit search to be per-
formed by either clients who hold the same encryption keys

Key Value

Application

Product names

Providers, prices

Online shopping

Keywords

File owners, file names

Keyword search, file sharing

Stock names Stock quotes

Stock quote dissemination

Patient names

SSN, medical histories

Online medical directories

Subscriber names | Phone numbers

Yellow-page service

Figure 2. Example applications of key-value search

as the data owners, or on a small number of keywords pre-
specified by clients. In addition, they often require a se-
quential scan through the encrypted data and are not effi-
cient. Anonymity-based approaches (e.g., [6, 27]) can also
achieve client privacy by routing queries through an anony-
mous overlay toward servers. These approaches focus on
providing anonymity to the clients, but do not protect the
privacy for the generalized key-value search.

In this paper, we present the Peekaboo system for per-
forming key-value search at untrusted servers without loss
of user privacy. We explicitly consider the tradeoffs be-
tween privacy, usability, and efficiency. Although there are
solutions that achieve strong security properties, we inten-
tionally favor an efficient and practical approach that offers
only weaker security properties. Our main idea is to split
the key-value pairs across multiple non-colluding servers
that do not share inputs with each other. All the servers then
jointly perform search to return query results. In summary,
the Peekaboo system has the following features:

e Secure: Given a client query expressed as a key, Peek-
aboo servers return a list of values matching the key
while no server, on its own, can determine either the
values retrieved, or the key-value bindings. Therefore,
Peekaboo protects both data owner privacy and client
privacy. Furthermore, the Peekaboo access control and
user authentication mechanisms prevent unauthorized
users from searching the data.

e Flexible: Peekaboo is applicable to any type of key-
value search using user defined match criteria (e.g.,
exact match [10], range search [12]). It can be easily
extended to support advance queries where not only
matched values but also matched keys will be returned
in query results (e.g., fuzzy match [11]).

e Efficient: Peekaboo requires neither expensive rout-
ing mechanisms to send data (or queries), nor special-
ized encryption algorithms on stored data. Our perfor-
mance evaluation shows that the storage costs of Peek-
aboo servers are comparable to or even less than legacy
servers, whereas the search latency is on the order of
tens to hundreds of milliseconds, acceptable to most
clients.

2 Model and Definitions

In this section, we describe our system model and the
privacy properties that Peekaboo is trying to achieve.

2.1 System Model

The system has three types of entities: data owners (own-
ers hereafter), clients, and Peekaboo servers. We view the
data as a list of key-value pairs. Without loss of general-
ity, we assume keys alone do not release useful information
about the key-value pairs that are to be searched (i.e., we
should not be able to infer a key-value pair from just the
key for the purpose of search to be meaningful). Peekaboo
servers can store key-value pairs provided by multiple inde-
pendent owners. A query consists of a single key and the
client is interested in retrieving all the values that match the
key in the key-value pairs using application specific match
criteria (e.g., exact match, range match).

The Peekaboo search protocol consists of two stages:
a registration stage and a query stage. In the registration
stage, owners publish key-value pairs at Peekaboo servers.
In the query stage, clients interact with servers to resolve
queries.

The system has two types of Peekaboo servers: K-
servers and V-servers. K-servers store keys only, whereas
V-servers store encodings of values that can be used to re-
cover values in the key-value pairs after search. Data own-
ers and clients talk only to the V-servers. Both types of
servers jointly perform search to resolve queries. Without
loss of generality, we assume: (1) Peekaboo servers are
“honest but curious”. They follow protocol specifications
exactly, and passively observe the information stored lo-
cally and the messages they received. (2) Peekaboo servers
do not collude to learn data and queries. This does not pre-
vent the servers from communicating with each other in
order to follow the protocol. In particular, each K-server
authenticates the V-servers, and interacts with only the V-
servers that it has authenticated through a protected channel
such as TLS [32].

2.2 Privacy Properties

Privacy is a guarantee that certain information about an
entity is hidden from other entities. The privacy property is
the definition of what types of information are hidden from
which entity. In a Peekaboo search system, there are two
types of entities whose privacy we would like to protect:
data owners and clients.

Throughout both registration and query stages, we strive
to prevent K-servers from learning values or user identities.
Although K-servers have access to keys, we protect the pri-
vacy of data owners and clients by providing anonymity to
both of them against the K-servers. Meanwhile, we strive to
leak no information about keys or values to V-servers, thus
providing confidentiality of both the key-value pairs pub-
lished by the owners and the key-value pairs retrieved by
the clients from the V-servers. Each server, on its own (i.e.,
without any input from other servers), cannot determine the
key-value bindings either stored or queried. Accordingly,
we define the following privacy properties for data owners
and clients, respectively:

e Owner privacy: During both the registration and query
stages, a K-server, on its own, should not learn the
owner identity and the list of values in the key-value
pairs. A V-server, on its own, should not learn either
the keys or the values in the key-value pairs.

e Client privacy: During the query stage, a K-server, on
its own, should not learn the client identity and the list
of values returned in the query results. A V-server, on
its own, should not learn the client’s queried keys or
the values retrieved.

Given such privacy definitions, we first describe in Sec-
tion 3 a basic protocol for performing registration and query
with a single K-server and a single V-server. We use this ba-
sic protocol as a building block, and present in Section 4 the
Peekaboo search system for an open environment, where
any client interested in retrieving key-value pairs can per-
form search. In such a scenario, while we assume servers
do not collude with each other, they could actively partici-
pate in search as well, performing on-line dictionary attacks
by enumerating all possible keys as queries. However, we
limit such dictionary attacks to be on-line so that they can
be detected and stopped. To prevent such dictionary attacks,
we further present in Section 5 an enhanced protocol that
limits search to only authorized clients using access control
and user authentication mechanisms.

In our model, we achieve a tradeoff between the level of
privacy and the usability and efficiency obtained in the pro-
tocols. For this purpose, we believe our privacy definitions
in an honest-but-curious model is sufficient. We discuss de-
ployment issues and solutions to mitigate server collusion

V-Server K-Server
1
Alice Vi—] . R1 L= Kg
vz R2 e Ky
Bob V} R3 N K}
Vi R4 K}

Figure 3. Using rendezvous numbers to bind
the keys and the values

in Section 6. However, if strong privacy is a concern, then
more secure protocols such as [19] can be used in the con-
text of keyword-based PIR.

3 The Basic Protocol

In this section, we describe a basic protocol as a build-
ing block for our system. This basic protocol involves a
single K-server and a single V-server, and is based on pub-
lic key cryptography. For the moment, we assume owners
and clients use this basic protocol to publish key-value pairs
and to perform search. Since this protocol has only a lim-
ited privacy guarantee, we present in the next section how
we can construct search systems based on this protocol to
provide the desired privacy properties. For clarity, we use
upper case K1, Ko, . .. to denote keys in the key-value pairs,
and use lower case k1, ko, . . . to denote encryption keys that
will be needed.

For the specific application of key-value search, keys
alone do not release useful information about the pairs for
the search to be meaningful. Thus our idea is to split the
pairs and store them at different servers by introducing a
layer of indirection in between. Figure 3 shows the high
level concept of the basic protocol, where owners store the
keys at only the K-server and the values at only the V-server.
To bind the keys and the corresponding values, we generate
a list of rendezvous numbers to serve as an indirection layer.
Each key-value pair is associated with a unique rendezvous
number generated randomly by the V-server, and forwarded
to the K-server.

Owners and clients both communicate with only the V-
server to publish data and to perform search. Given a client
query, both servers work jointly to look up query results us-
ing rendezvous numbers. During the communication, keys
will be forwarded to the K-server without being exposed to
the V-server, whereas the values are stored and returned by
the V-server. To simplify our description, we assume the
system has a single owner Alice who wants to register a
list of key-value pairs (K1, V1), ..., (K, V,), and a single
client Charlie who wants to retrieve the value correspond-

ing to a key Ks. The K-server’s public key is pk. The basic
protocol works as follows (illustrated in Fig. 4):

. N V-Server K-Server
Alice: Registration stage
o+ E(K) K < Doy(c)
o, V, e v RIL_% R | Padd
— % Vi fStore (Alice,V,R; i Store (K, R)
Charlie;. Query stage
Ias « Epk(Ks) R
o,
— 9% ,Store (Charlie,R)}—s—= KsDploy)
DR SR (Ri, Rg) < 1 r If K; matches K,
* v+ (Alice, V) r<+ (R, Ry)
\ (Alice, V) «v

Figure 4. The basic Peekaboo protocol

Registration stage:

Step 1: To publish a key-value pair (K;, V;), Alice en-
crypts the key K; with the K-server’s public key pk, and
submits the encryption ¢; «— Epi(K;) and the correspond-
ing value V; to the V-server:

Alice — V-server : «;, V;

Step 2: On reception of the registration request, the V-
server extracts V; and the owner identity “Alice”, generates
a unique rendezvous number R;, and stores the following
entry locally:

V-server : (Alice, V;, R;)

The V-server then forwards «; to the K-server, attaching R;:

V-server — K-server : «;, R;

Step 3: The K-server extracts K; < Dpi(c;) from the
message, where D, (a;) denotes the decryption of o; using
the private key corresponding to the K-server’s public key
pk. Tt then registers the tuple (K;, R;) locally:

K-server : (K, R;)
Query stage:

Step 1: To search based on a key K, the client Charlie
encrypts K with the K-server’s public key pk, and submits
the encryption o5 < E,; (K) as the query to the V-server:

Charlie — V-server : ag

Step 2: The V-server generates a unique rendezvous
number R for the query, and registers the tuple of the client
identity “Charlie” and R locally:

V-server : (Charlie, R;)

The V-server then attaches R; to the original query o, and
submits a search request to the K-server:

V-server — K-server : oy, R

Step 3: On reception of the search request, the K-server
extracts the queried key K, «— D, (cs) using its private
key. The K-server then performs search locally. If a key K;
matches the query K, based on the predefined application
match criteria (e.g., numerically equal or string match), the
K-server returns the tuple » <+ (R;, R;) as the query result
to the V-server, meaning the key with rendezvous number
R; matches the key with rendezvous number R,:

K-server — V-server : r

Step 4: The V-server extracts (R;, Rs) < r, looks up
the corresponding value V; and the owner identity “Alice”
using R;, and returns the final query result v « (Alice, V)
to Charlie:

V-server — Charlie : v

We note that in the query stage, no owner participation is
needed to perform search. Because the K-server has access
to both the keys stored by the owners and the keys submit-
ted as queries, it can search all key-value pairs registered by
different owners using application specific matching crite-
ria.

This basic protocol provides the desired privacy protec-
tion from the K-server, which has no information about the
values, the data ownership, or the client identities. However,
it does not provide privacy against the V-server. Although
the V-server has no access to the keys that are encrypted
under the K-server’s public key, it may infer the key-value
bindings based on the values returned from client queries.

3.1 Supporting Advanced Queries

In many applications, a client may not only want to get
a list of values matching the query, but also be interested
in seeing the matched keys as well. For example, in a ser-
vice discovery system, a client searching for printers will
be interested in getting all the attributes regarding the list of
printers in order to make the best selection. Another exam-
ple is keyword search where a client is searching for all file
names containing the substring “app”.

The basic search protocol can support such advanced
queries with a slight modification. In order to obtain
matched keys in the query results, the client can attach a
one-time encryption key protected by the K-server’s public
key in the query. For better performance, we can use sym-
metric keys instead of public keys. As shown in Figure 5,
before returning the query results, the K-server encrypts the
matched keys using the client-provided encryption key sk,
and sends the encryption together with the query results to
the V-server.

V-Server K-Server
(Alice, V,, R) (K, R)

Charlie: Query stage
I,,"ixs + En((Ks, sk))

— %, Store (Charlie,Ry)|%Rs K, sk)D,(0x) | |

Y * (R Rg,04) <1 r

If K; matches K| |
—] i
* v+ (Alice,V,,0)

O Esk(Ki) i
r< (R, Rq, o)) |

i« (Alice,V, o) v
e Ki <= Dy(ar)

Figure 5. Supporting advanced queries (sk is
a one time encryption key generated by Char-
lie.)

K-Server

_—/

<KV, >
(V' =<ID, V,>)

Figure 6. An example Peekaboo search sys-
tem with a single K-server and n V-servers

4 The Peekaboo Search System

We now consider how we can use the basic protocol to
construct a Peekaboo search system with privacy guarantees
against both the K-servers and the V-servers. Specifically,
we would like to protect the values from being exposed to
the V-servers. One option is for each data owner to encrypt
the values using a secret key, and store the encryptions at
the V-server to return as query results. While clients can
still perform search using keys, they need to contact the
corresponding owners after search in order to decrypt the
returned query results. This increases not only the search
latency perceived by clients, but also the processing over-
head of data owners, who will be involved in every query
that results in a hit from their key-value pairs.

Instead, our idea for preventing the V-servers from ac-
cessing the values is to divide every value V in the key-
value pairs into n (n > 1) pieces, and store them across
n V-servers, as shown in Figure 6. Each individual piece
Vi(1 < i < n) reveals no information about V, but the
knowledge of ¢ or more pieces can be easily used to recon-
struct the original V' using a reconstruction function F'. One
choice of F'is an XOR function with ¢ = n, which offers
not only true information-theoretic privacy, but also fast re-
construction due to its simplicity. More generally, we can

adopt (¢, n) threshold schemes (e.g., [28]) for choosing F'.

To register a key-value pair (K, V) in a Peekaboo sys-
tem with n V-servers, the owner first decomposes V' into
n different pieces of encodings Vi, Vs, ..., V,, so that a
client can reconstruct V' using ¢ out of the n pieces later.
To bind the n different pieces of encodings, the owner as-
signs a unique identification ID to this key-value pair, and
composes a set of n new key-value pairs { (K, V), (K, V3),
oo (K, V) }, where V= (ID, V;) (1 < ¢ < n). Finally,
the owner communicates with all the n V-servers in parallel
using the basic protocol described in Section 3, and registers
each tuple (K, V) by communicating with the ¢-th V-server
1<i<n).

Similarly, to perform search using key K, the client sub-
mits the same query of K to randomly selected ¢ V-servers
in parallel using the basic protocol. After retrieving the ¢
different pieces of encodings for V from the selected V-
servers, the client reconstructs V' using the predefined F'.

The minimum number of V-servers to be contacted for
retrieving and reconstructing a value V' in the system should
be determined based on the level of privacy required by the
corresponding data owner. To prevent the K-server from
becoming the system bottleneck, we can also configure the
system with multiple K-servers to balance both the registra-
tion and query workload.

The storage overhead at each server, determined by the
requirement of the basic protocol, is linear in the number
of owners and the number of key-value pairs in total. The
communication overhead is linear in the number of query
results. Both overheads are comparable to legacy servers.
Since a client will talk to multiple V-servers in parallel, the
search latency will be slightly higher with public key en-
cryption/decryption and one more round-trip communica-
tion between the V-servers and the K-server. We will eval-
uate the system overhead in Section 7.

5 Access Control and User Authentication

In many applications, data owners would like to control
which clients can search which data items. For example,
in stock quote dissemination, quotes should be searched
by paying customers only. More seriously, without access
control and authentication, a malicious user can carefully
perform on-line dictionary attacks by searching all possible
keys to find out all the registered key-value pairs. We focus
on the environments where both users and servers may be-
long to different organizations and administrative domains.
Unlike traditional mechanisms, Peekaboo access control
and authentication should be both privacy-preserving and
convenient for search to be used frequently. Our design is
guided by the following principles:

o [nter-operability and expressivity. The system should
support users from different organizations or domains.

Given a query, servers should return all query results
(which may be from different owners) that the client
is authorized to see. Each owner should be able to
specify which client can access which key-value pairs
based on different levels of data sensitivity.

e Privacy non-disclosure. Servers should not be able to
infer the key-value pairs from the access control and
user authentication information.

e Convenience to the user. For convenient practical use,
clients should not need to know which data owners can
potentially satisfy their queries prior to search. Owners
should be able to revoke existing access permissions of
their data easily.

With all users talking only to the V-servers, the natural
choice is to authenticate users at the V-servers. Access con-
trol can be enforced at both the K-servers and the V-servers.
For inter-operability, Peekaboo access control and user au-
thentication are based on public key cryptography and we
assume an available public key infrastructure (e.g., [22]).

5.1 V-server based Access Control

Given a query, V-servers can perform access control by
jointly returning only the values that a client is authorized
to see. In the registration stage, each owner creates an
Access Control List (ACL) for every (K, V) of their key-
value pairs, specifying a list of clients that can access the
pair. The owner then splits V into n pieces Vi, Vo, ..., V,,
attaches the ACL with every V;, and registers the tuple
(K,{V;, ACL}) by communicating with the i-th V-server
using the basic protocol. During the query stage, given
all the matched rendezvous numbers returned from the K-
server, each V-server returns to a client only the value pieces
that the client is allowed to access based on the correspond-
ing ACLs.

However, such V-server based access control may create
a side channel of information leakage, where the V-servers
may infer the corresponding queried keys based on the num-
ber of entries matched and returned from the K-servers. For
example, the V-servers can guess whether a searched key is
about a popular product with many matching results.

5.2 K-server based Access Control

The K-servers can perform access control as well to pre-
vent the aforemention side channel of information leakage
and thus provide a stronger privacy guarantee. By returning
only the entries that a client is authorized to access, the K-
servers prevent the V-servers from learning the exact num-
bers of matched results.

However, because the K-servers do not have access to
the client identity information, they cannot perform permis-
sion checks directly by attaching an owner specified ACL
for every stored key. We thus need a solution that can hide
client identities in ACLs while still enforcing access con-
trol.

Our key idea is to let each owner create a pseudonym
C’ for a client C whom the owner is granting access.
Every such (C,C’) client-pseudonym mapping is split in
half and stored at different types of servers. In particular,
the V-servers authenticate clients with their identity infor-
mation, while the K-servers check access permission using
client pseudonyms to preserve privacy. To prevent a mali-
cious client from forging pseudonyms or using other peo-
ple’s pseudonyms, we use noninteractive zero-knowledge
proofs so that the V-servers can ensure the client-submitted
pseudonyms are indeed those specified by the data owners,
even though the V-servers themselves do not have access to
the pseudonyms. We describe the modified protocol with
access control between a K-server and a V-server using the
same example described in Section 3. The scheme can be
easily generalized to a system with multiple V-servers.

Registration stage:

Step 1: For each key-value pair (K, V;), the owner Alice
creates an access control list AC'L; consisting of a list of
clients {C1, Cy, ...} that can search the pair:

Alice : <Kl, V;', ACLZ>
ACL; = {Cy,Cs, ...}

For each client C; in AC'L;, Alice creates a pseudonym CY,
and replaces C; with C! in ACL;:

Alice : ACL; = {C1,C5, ...}

To register (K;,V;) with access control information, Al-
ice encrypts both the key K; and the corresponding
ACL; using the K-server’s public key pk into «; «
E,i(K;, ACL}), so that only the K-server will be able to
see the key and the access control specification.

For each client C;, Alice constructs a tuple m; =
(Cs, e, hy), where e; «— Ep. (C}) is an encryption of
the client pseudonym C! using C;’s public key pc;, and
h; < H(C?) is generated using a one-way hash function
H. This tuple m; allows the V-server to verify the client
C;’s input later (we discuss how to choose the hash func-
tion later).

Finally, Alice submits «;, the corresponding value V;,

and the set of tuples M = {mj, mo, ..., } to the V-server:
Alice — V-server a;, Vi, M

Step 2: On reception of the registration request, the V-
server generates a rendezvous number R;, and registers the

following tuple locally:

V-server (Alice, V;, R;, M)

where M = {<Cl, €1, h1>, <C2, €o, h2>, .. }

The V-server then forwards the encryption «; as well as the
rendezvous number R; to the K-server:
V-server — K-server : «;, R;
Step 3: The K-server decrypts the message
(K;,ACL}) «— Dpi(a;), and registers the data and
the access control information locally:

K-server : (K;, ACL, R;)

Query stage:

Step 1: To search based on a key K, the client Char-
lie first submits a “ready-to-search” request to the V-server
with his identity I, = “Charlie”:

Charlie — V-server : I,

Step 2: Given the “ready-to-search” request from
“Charlie” = I, the V-server extracts Charlie’s pseudonym
from the tuple (Charlie, ., h.) where e, = E,.(C") and
he = H(C") if one exists, and presents e, and h. to Char-
lie:

V-server — Charlie : e, h.

Step 3: Charlie decrypts e, and finds out his pseudonym
C" — Dpc(ec).

To send his query K and his pseudonym C’ to the
K-server without leaking the information to the V-server,
Charlie re-encrypts both K, and C’ with the K-server’s pub-
lic key pk as o, «— E,i(K) and €], «— E,(C"), respec-
tively.

In addition, to prove that C’ (hidden in the encryp-
tion e’) is indeed the one returned by the V-server, Char-
lie constructs a noninteractive zero knowledge proof 7 that
H(D,(el.)) = he. Charlie then submits «, €., and 7 back
to the V-server:

Charlie — V-server : ag,e.,

Step 4: The V-server first verifies that the proof 7 pre-
sented by Charlie is true based on the received e/, and the
stored h.. It then creates a rendezvous number R, and reg-
isters the entry (Charlie, R) for this query locally:

V-server : (Charlie, R)

The V-server then forwards « and e, to the K-server, at-
taching the rendezvous number R:

V-server — K-server : ag, el R

Step 5: On reception of the query, the K-server decrypts
a and e/, to obtain both the queried key K, «— Dy ()
and the corresponding client pseudonym C’ «— D,y(el).
The K-server then performs both search and access permis-
sion check. Only those query results that are allowed to be
accessed by Charlie’s pseudonym C’, e.g., R;, will be re-
turned as r < (R, R;) to the V-server:

K-server — V-server : r

Step 6: Finally, the V-server looks up the values based
on the K-server returned rendezvous numbers, and sends
the query results v < (Alice, V;) back to Charlie:

V-server — Charlie : ~y

Discussion

By verifying the noninteractive zero-knowledge proof 7
that H(Dpx(e.)) = h., the V-server is convinced that a
client is using the pseudonym sent to it by the V-server when
the client submits a query. The form of this proof depends
on the form of encryption and the one-way function H, but
certain such functions permit 7 to be constructed at a com-
putational expense roughly equal to the expense of a digi-
tal signature. In one example, the K-server selects a cyclic
group G in which both the Decisional Diffie-Hellman prob-
lem and computing square roots are intractable, and utilizes
Shoup-Gennaro encryption [29] in G and one-way function
H : G — G defined by H(z) = 2?; see, e.g., [25, Sec-
tion 5.2] for details.

Note access control checking is only performed on pri-
vate data. For public data that can be searched by anony-
mous clients, Alice simply tags them as “public” at both the
K-server and the V-server for better search performance.

To support groups, Alice can create a pseudonym G’ for
each group GG in ACL specification. For each member C;
in G, Alice encrypts the group pseudonym G’ using C;’s
public key pc;, and obtains the encryption e; «— Ep, (G').
Finally, Alice computes the hash h; < H(G'), and sends
m; = (Cy,e;, h;) to the V-server during the data registra-
tion, so that C; can use G’ to perform search later:

Alice — V-server : m;

To revoke a client C;’s access rights on a particular key-
value pair (K;, V), Alice simply removes C;’s pseudonym
C} from the corresponding AC'L!; at the K-server. Such
permission revocation can take effect immediately without
being noticed by the client at all.

Since each owner selects client pseudonyms indepen-
dently, a client may need to decrypt multiple different
pseudonyms from different owners during the query stage.
To reduce the query overhead, pseudonyms can be cached
at the client side in the first query, and reused at subsequent

queries to avoid the first two steps in the query stage. Alter-
natively, each client can select a unique pseudonym (e.g., a
user ID), and register it at different owners for permission
specification.

5.3 User Authentication

For inter-operability, the Peekaboo user authentication is
based on conventional digital signatures (e.g., [9]). To de-
fend against replay attacks, we use timestamps and assume
loosely synchronized clocks. When submitting a query
to the V-server in step 3, the client Charlie generates a
timestamp 7, signs 1" and the rest of query, and submits the
following message including the signature to the V-server:

Charlie — V-server : Q,o

where Q = {T, o, €, w}. Here o,y «— Epp(K,) and e,
E,,(C"). o is the digital signature of ().

On reception of the message, the V-server verifies the
signature o using Charlie’s public key, which can be ob-
tained from a public key infrastructure. The V-server then
processes the query using the procedures described above.

In summary, the revised Peekaboo protocol with access
control and user authentication is illustrated in Figure 7.

Alice: Registration stage V-Server K-Server
{foEq(K, C)
e.E(C), h«H(C)
M«{(Charlie, e, h.)}
0. V.M |Store (Alice,V, Ry M) o, R |*(K, C’) + D,(ct)
— 7 "M ={(Charlie, e, h.)} * Store (Ki, C', R) |
Charlie: Query stage
#1, = Charlie 1.1 * Charlie « |,
{ 2. e h. | *Look up “Charlie”
+C’ + Dc(e,) to return e, h,
e+ Ey(C), o Ey(K)
* 1« zkp(H(D,(€') = hy)
*Q <« (T, o€/, m} (T, oy e, < Q s o ["Ks < Dg(os)
* 0+ sig(Q) 3.Q.g, * Verifyo, 4 080 Re el Dy(€’)
« Store (Charlie, Ry) °If K; matches K
&& C’ is permitted
! 6.y *(R,Rg) «r 5.1 r«+ (F{Iy RS)
\“~‘LAIice, V) ey * v+ (Alice, V)

Figure 7. The enhanced protocol with ac-
cess control and user authentication, where
”zkp” is an abbreviation for "zero knowledge
proof”.

6 Deployment and Vulnerabilities

In this section, we discuss various issues in system de-
ployment, and outline potential malicious attacks that Peek-
aboo is vulnerable to with possible solutions. Completely
addressing these attacks is a topic of ongoing work.

A basic assumption of the Peekaboo search system is that
the K-servers have no information about user identities or

data values. Therefore, in real deployment, the K-servers
should not have access to the network packets routed toward
the V-servers, for example, not be configured on transit net-
work backbones.

Both the K-servers and the V-servers could misbehave by
producing arbitrary or bogus search results. To detect mis-
behaving servers, we can use both owner-initiated auditing
and client-initiated auditing based on random sampling so
that the more the server misbehaves, the higher the proba-
bility that it will be caught. For server non-repudiation, both
servers can sign their responses in query results.

A more serious threat is server collusion, where the K-
servers and the V-servers cooperate to reconstruct the key-
value pairs registered or searched. One approach is to in-
troduce further layers of indirection by adding auxiliary
servers in the system. Specifically, we can deploy a chain of
auxiliary servers between a K-server and a V-server to per-
form the basic Peekaboo protocol. A registration request
(0, V) (a «— Ep(K)) is first submitted to a V-server, who
creates a rendezvous number Ry and forwards (o, Ro) to
the first auxiliary server in the chain. Each auxiliary server
A;, on reception of the message, randomly generates a new
rendezvous number R; to replace the old one R;_; in the
message to forward to the next hop server, until the re-
quest finally reaches the K-server. Similarly, a user query
is also routed incrementally along the server chain from
the V-server to the K-server. Query results are then prop-
agated back in the reverse direction. To tolerate the brute
force collusion of up to ¢ servers in this chain, we need at
least ¢ — 1 auxiliary servers between the K-server and the
V-server. There is thus a balance between privacy and ef-
ficiency, and both the data owners and clients can jointly
decide the level of desired privacy.

However, such multi-server protocol is vulnerable to
timing attacks with the collusion between the K-server and
the V-server. For example, both servers could jointly mea-
sure the time needed between the V-server forwarding a
query and the K-server receiving it, or submit queries one
by one to learn who submitted what query. To mitigate
such attacks, we can use solutions from anonymous rout-
ing [4, 31]. For example, each auxiliary server can buffer
and reorder messages within a small time frame.

Finally, Peekaboo servers could perform traffic pattern
analysis to infer popular keys or values by measuring the
frequency of the corresponding rendezvous numbers in
queries or query results. In particular, the V-servers could
tell whether two queries resulted in the same response even
though they have access to neither queries nor query results.
To mitigate this threat, owners can initiate the registration
process frequently in order to update both the rendezvous
numbers and the encodings of values held by the V-servers.

7 Example Applications and Performance

In this section, we describe an example application of a
file sharing service to illustrate how Peekaboo can be used
to perform keyword search without loss of user privacy. We
then evaluate the protocol overhead using trace-based ex-
periments and compare its performance with regular cen-
tralized servers.

In a file sharing system, owners store files or file names
at directory servers. Each file has an owner-assigned lo-
cal ID. Clients submit queries as keywords to the servers.
If the content or the name of a file matches the query, the
servers return the local file ID and the corresponding owner
identity (e.g., IP address) as query results. Clients can then
download the file directly using the local file ID from the
corresponding file owner.

In the Peekaboo system registration stage, owners regis-
ter the file names (or file content) as the keys, and the local
file IDs as the values at the K-servers and the V-servers, re-
spectively. For each file, the V-servers randomly generate
unique 128-bit strings as the rendezvous numbers. To sup-
port efficient query search, each V-server computes a hash
based inverted index of rendezvous numbers, whereas each
K-server computes an inverted index table of keywords.
In the query stage, clients submit keywords as the queried
keys, and get a list of matched values represented as the lo-
cal file IDs and the corresponding file owner IP addresses.
When advanced queries are supported where matched keys
should be returned in query results, the servers also return
the list of matched file names (or relevant file content) en-
crypted by the client-provided one-time encryption key.

We use a Gnutella [15] trace gathered at CMU to con-
duct trace based experiments, and evaluate the system per-
formance using the described file sharing application in the
following three aspects: (1) the storage costs at both types
of servers, (2) the search latency perceived by clients, and
(3) the overhead of access control and user authentication.
We implemented both types of servers, and evaluate the per-
formance using a single K-server and a single V-server that
communicate via the basic protocol, as described in Sec-
tion 3. Increasing the number of V-servers in the system
would not change either (1) or (3). Because clients commu-
nicate with V-servers in parallel, the search latency should
increase only slightly with multiple V-servers. For com-
parison, we also implemented a regular centralized server
that performs both data registration and query, and repeat
our experiments. All the servers are implemented in C++ in
Linux, running on PIII 550MHz machines with 128 RAM
on a 10BaseT Ethernet LAN. Each data point in the figures
below is the average of ten runs.

—— Regular server
-=- V-server
-o K-server

Index table size (Kbyte)
=)

3 4 5 6
Number of files indexed

Figure 8. Index table size vs. number of in-
dexed files

7.1 Storage Costs at Peekaboo Servers

To evaluate the storage costs, we extract file names and
their owner IP addresses from the search reply messages
in the Gnutella trace, and register them using a fake owner
program simulating different file owners. Figure 8 shows
the index table sizes of the Peekaboo servers and the regular
centralized server as the function of the number of indexed
files. We observe that the storage costs increase linearly
as the number of indexed files increases. The K-server in-
dex table sizes are slightly larger compared with a regular
server, while the V-server index sizes are only about a third
of those of a regular server. In general, the storage costs are
small at both types of Peekaboo servers.

7.2 Search Latency Perceived by Clients

Il Regular
[Regular-advanced —

[Peekaboo — 1
1 Peekaboo-advanced

w
o

W
=)
|

Average search latency (ms)
S & 38 &

o

100000

o

1000 10000
Number of files indexed

Figure 9. Peekaboo search latency

We proceed to evaluate the search latencies perceived by
clients. We implemented a client program running at a third
machine (PIII 550MHz with 128 RAM) in the same Eth-
ernet LAN. The public key encryption uses the RSA algo-
rithm [26] with 1024-bit keys, and the one-time symmet-
ric key encryption uses the AES algorithm [1] with 128-bit
keys. Both algorithms are implemented by the Crypto++

| | Total [Network [Lookup [RSAen. [RSAde. | AESen. | AES de. [Other |
Mean (ps) 36475 6427 3041 1575 | 23834 581 781 | 236
Std dev (us) 2869 2831 53 10 38 14 1 5
Percentage || 100.0% | 17.6% 8.3% 43% | 63.34% 1.6% 2.1% | 0.6%

Figure 10. Time to process a search request using 1024-bit RSA keys and 128-bit AES keys.

library (version 4.2) [8]. For each query, the servers return
the first 100 matched files as query results. Figure 9 shows
the search latencies measured by the client. Compared with
the regular server, Peekaboo incurs much higher search la-
tency. When we use the advanced queries to support re-
turning matched keys (i.e., matched file names), the search
latency increases only slightly compared with the basic pro-
tocol.

To further examine the search latency, we list the times
spent in various steps of processing a query in Figure 10.
We fix the number of files indexed to be 10°, and show both
the mean and the standard deviation of latency as well as
the percentage of the total latency. The “Total” column cor-
responds to the time elapsed between the client submission
of a query and getting back the reply. RSA decryption and
network transmission are the most expensive steps, whereas
AES encryption and decryption are fast, accounting for less
than 5% of the processing time in total. The “Look up” time
includes both the K-server lookup and the V-server lookup,
and depends on the number of files indexed. The “Other”
line consists of the time spent for the V-server to buffer and
forward client requests to the K-server as well as the time
spent to buffer and forward AES-encrypted replies back to
the client. In general, the search latency is acceptable to
clients since the network latencies on WAN are usually on
the order of tens of milliseconds [21]. By optimizing the se-
curity operations (e.g., by using cryptographic routines im-
plemented in hardware), we expect the performance penal-
ties due to security to decrease. Furthermore, if clients will
submit multiple queries in a row, they can set up symmet-
ric session keys with the K-server for encrypting/decrypting
queried keys to amortize the costs of RSA decryption.

7.3 Overhead of Access control and Au-
thentication

The Peekaboo access control and user authentication
mechanisms introduce additional query processing over-
head. The V-server based access control is relatively sim-
ple and should incur only a small amount of overhead by
performing an additional ACL lookup before returning re-
sults. We thus consider the K-server based access control
described in Section 5.2 to estimate the worst case per-
formance. Such access control and authentication intro-
duce the following extra steps during the query process-

ing: (1) client signature signing and verification, (2) client
pseudonym encryption and decryption, and (3) noninter-
active zero-knowledge proof construction and verification.
While the digital signature based client authentication has a
relatively constant cost, the cost of decrypting pseudonyms
can grow linearly with the number of client pseudonyms
assigned by different owners. Fortunately, such expensive
computations are performed by the clients which will less
likely become overloaded compared with the servers. In
addition, the client pseudonyms can be cached at the client
side to reduce the search latency. We implemented both (1)
and (2) in the example prototype for our evaluation. The
noninteractive zero-knowledge proof, as discussed in Sec-
tion 5.2, can be constructed with computational expense
roughly equal to the expense of a digital signature.

180

[Client

160k [K-server | |
] Network
H V-server

Average search latency (ms)
s o © 2 B =B
5 8 8 8 8 &

n
=3

il

12 4 12 4 12 4 12 4
1000 files 100000 files 1000 files 100000 files
No caching Caching

o

Figure 11. Search latency with access control
and user authentication. The client is associ-
ated with 1, 2, 4 pseudonyms, respectively

Figure 11 shows the search latency with the Peekaboo
access control and user authentication mechanisms by vary-
ing the number of indexed files and the number of client
pseudonyms. For comparison, we list the processing time
spent at various entities as well as the time spent on net-
work transmission. Without pseudonym caching, the client
side processing takes the longest time. In general, the in-
crease of the number of files has little effect on search la-
tency. The client side processing time increases proportion-
ally to the number of client pseudonyms, while the server
side processing latency increases only slightly with the in-
creasing number of client pseudonyms. By caching client
pseudonyms, we can greatly reduce the client processing
time, and therefore reduce the overall search latency.

8 Related Work

A number of recent solutions have been proposed to per-
form search on encrypted data (e.g., [30, 3]). Although en-
cryption provides data confidentiality to protect privacy, it
limits the search functionality that can be performed. These
approaches either require clients to share the same encryp-
tion keys used by the data owners [30], or limit search to be
performed on a small number of keywords pre-specified by
the clients. They also require a sequential scan through en-
crypted data for each query, which is an expensive operation
in terms of performance.

There has been a large body of literature on anonymous
communication to prevent discovery of source-destination
patterns. In general, there are two types of approaches:
proxy based approaches and mix based approaches. Proxy
based approaches interpose one or more proxies between
the sender and the receiver to hide the sender’s identity from
the receiver. Examples include Janus [18] and Crowds [24].
The Peekaboo V-servers bear some similarity with prox-
ies in that all user traffic goes through them. However, the
primary purpose of Peekaboo is not to hide user identities,
but rather to perform search without revealing the key-value
pairs. Thus the Peekaboo V-servers are not just proxies as
they actively participate in storing and returning values. The
mix based approaches interpose (e.g., [4, 31]) a chain of
proxies between the sender and the receiver to achieve un-
linkability between the sender and the receiver. We showed
in Section 6 where we used mix based approaches to prevent
timing attacks. Compared with these approaches, Peekaboo
protects not only user identities, but also key-value pairs.
However, Peekaboo does not provide unlinkability between
key-value pairs in the presence of server collusion.

The problem of Private Information Retrieval (PIR) [5,
14] has been well studied to protect client privacy in search.
These approaches model the database as an n-bit string, and
a client retrieves the ¢-th bit without revealing the index
1. Although PIR schemes can achieve very strong security,
they are generally not practical to use.

Secure multi-party computation (SMC) has also been
widely studied [16]. These techniques enable multiple par-
ties, each holding a private input, to collectively compute
a function of their inputs while revealing only the function
output. Our problem can be viewed as a special case of
this problem, though it permits more efficient solutions than
general SMC techniques, which are rarely efficient for prac-
tical use.

Recent work [2] has also noticed the value of two or
more logically independent servers for maintaining the pri-
vacy of database content and queries. It envisions an archi-
tecture where data and queries can be decomposed across
multiple servers in different ways. The authors leave open
a concrete solution based on the proposed architecture, and

Peekaboo may potentially be adapted to provide a starting
point.

9 Conclusion

We have proposed a system called Peekaboo, for per-
forming general key-value search at untrusted servers with-
out loss of efficiency and user privacy. Given a set of key-
value pairs from multiple owners that are stored across un-
trusted servers, Peekaboo allows a client to search these
pairs in such a way that each server, in isolation, cannot
determine any of the key-value bindings. Our main idea is
to separate the key-value pairs and store them across dif-
ferent servers. Supported by access control and user au-
thentication, Peekaboo is: (1) secure in that search can be
performed by only authorized clients while protecting the
privacy of both data owners and clients, (2) flexible in that
it is applicable to any type of key-value search, and can be
easily extended to support advanced queries, and (3) effi-
cient in that it has small storage cost and search latency, and
hence is practical to use today.

References

[1] AES. http://csrc.nist.gov/CryptoToolkit/
aes/rijndael.

[2] G. Aggarwal, M. Bawa, P. Ganesan, H. G. Molina, K. Ken-
thapadi, R. Motwani, U. Srivastava, D. Thomas, and Y. Xu.
Two can keep a secret: A distributed architecture for secure
database services. In CIDR, 2005.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In Proc. of Eu-
rocrypt, 2004.

[4] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84-88, 1981.

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In IEEE Symposium on Foundations
of Computer Science, 1995.

[6] 1. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage and
retrieval system. In Designing Privacy Enhancing Technolo-
gies:International Workshop on Design Issues in Anonymity
and Unobservability, LNCS 2000.

[7]1 S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz.
An architecture for a secure service discovery service. In
Mobile Computing and Networking, 1999.

[8] W. Dai. Crypto++. http://www.eskimo.com/
~weidai/cryptlib.html.

[9] Digital signature standard (DSS). Federal Information
Processing Standards Publication 186, 1994.

[10] Exact match. http://www.
searchenginedictionary.com/e.shtml#
exactmatch.

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]
(28]

[29]

(30]

Fuzzy match.
searchenginedictionary.com/
terms-fuzzy-matching.shtml.
J. Gao and P. Steenkiste. An adaptive protocol for efficient
support of range queries in DHT-based systems. In /ICNP,
2004.

D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project aura: Towards distraction-free pervasive computing.
In IEEE Pervasive Computing 1, 2002.

Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information retrieval
schemes. Journal of Computer and System Sciences (JCSS),
60(3):592-629, 2000.

Gnutella hosts. http://www.gnutellahosts.com.

O. Goldreich. The Foundations of Crytography - Volume 2.
Cambridge University Press, 2004.

U. Hengartner and P. Steenkiste. Protecting access to peo-
ple location information. In Proc. of the First International
Conference on Security in Pervasive Computing, 2003.

The Lucent personalized web assistant. http://www.bell-
labs.com/project/lpwa/history.html.

L. Kissner, A. Oprea, M. K. Reiter, D. Song, and K. Yang.
Private keyword-based push and pull with applications to
anonymous communication. In Applied Cryptography and
Network Security (ACNS), 2004.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In ASPLOS 2000.
H. A. Lagar-Cavilla, N. Tolia, R. Balan, E. de Lara,
M. Satyanarananan, and D. O’Hallaron. Dimorphic comput-
ing. Technical report, Carnegie Mellon University, CMU-
CS-06-123.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
ACM Trans. Computer Systems, 10(4):265-310, 1992.

U. Leonhardt and J. Magee. Security considerations for a
distributed location service. Journal of Network and Systems
Management, 6:51-70, 1998.

M. Reiter and A. Rubin. Crowds: Anonymity for web trans-
actions. ACM Transactions on Information and System Se-
curity, 1(1):66-92, 1998.

M. K. Reiter, X. Wang, and M. Wright. Building reliable
mix networks with fair exchange. In Applied Cryptography
and Network Security (ACNS), 2005.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 27(2), 1978.

V. Scarlata, B. Levine, and C. Shields. Responder anonymity
and anonymous peer-to-peer file sharing. In /ICNP 2001.

A. Shamir. How to share a secret. Communications of the
ACM, 22(11), 1979.

V. Shoup and R. Gennaro. Securing threshold cryptosystems
against chosen ciphertext attack. Journal of Cryptology, 15,
2002.

D. X. Song, D. Wagner, and A. Perrig. Practical solutions for
search on encrypted data. In IEEE Symposium on Security
and Privacy, 2000.

http://www.

(31]

(32]

(33]

P. Syverson, D. Goldschlag, and M. Reed. Anonymous con-
nections and onion routing. In Proc. of the IEEE Symposium
on Security and Privacy, 1997.

The TLS protocol. http://www.ietf.org/rfc/
rfc2246.txt.

M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum.
Locating objects in wide area systems. In IEEE Communi-
cations Magazine, pages 104—109, 1998.

