Detecting organized eCommerce fraud using scalable categorical clustering

ACSAC'19

Samuel Marchal, Aalto University & F-Secure Corporation Sebastian Szyller, Aalto University

Contact: samuel.marchal@aalto.fi

eCommerce fraud

3-5% of orders is fraudulent for \$50B loss every year

Organized eCommerce fraud

Observation and assumption

Organized frauds belong to fraud campaigns characterized by

- Small number of customers (fraudsters)
- Several orders (10s)
- Limited time period (several days)
- Close geographical location (same city / neighborhood)
- Similar payment method (credit card / delayed bills)

By grouping orders into fraud campaigns we can improve the detection of organized fraud

- → Orders grouped together are likely fraud
- → Isolated orders are likely legitimate

Clustering organized fraud

Cluster frauds from the same fraud campaign together

- Generate small clusters → 1 cluster = 1 fraud campaign = 10s of orders
- Generate singletons → legitimate order can remain non-clustered

Process 100,000s orders in a few hours

Scalable method with low computational complexity

Input categorical data

- Fraud campaign similarity = identical categorical attributes
 - → email address, pickup point, street address, city, credit card number, etc.

Categorical clustering

Existing solutions

- Can generate small clusters, e.g., agglomerative clustering...
 - ... but requires pairwise distance computation $O(n^2) \rightarrow not scalable$
- Can have acceptable complexity (independent from dataset size), e.g., Kmodes...
 - ...but designed to generate only large clusters + no singletons

Require a new categorical clustering solution scalable and that can generate small clusters

Recursive Agglomerative Clustering Principle

Combine 2 clustering methods

- Agglomerative clustering: AggloClust
 - → generate small clusters
 - → high complexity
- Clustering with sampling: SampleClust
 - → complexity reduction
 - → generate large clusters (at most |sample|)

RecAgglo Algorithm

Selectively apply AggloClust and SampleClust

- 1. Recursively split clusters using **SampleClust**
 - Until they are "small enough"
 - Random sample of size |sample| = log(n)
- 2. Finalize small clusters using AggloClust
 - High quality small clusters
 - Possible singletons

RecAgglo speed and accuracy

Only RecAgglo and SampleClust scale to large datasets

→ 5 hours to cluster 300,000 samples

Clustering 10,000 legitimate orders and 5,000 frauds

Algorithm	Impurity	Clustered fraud	Time
RecAgglo	0.8%	42.1%	185s
AggloClust	1.2%	51.9%	1h31
SampleClust	3.3%	2.2%	38s
Kmodes	10.5%	39.2%	7h44
ROCK	0.9%	30.3%	1h38

Only RecAgglo and AggloClust have high detection capability while achieving low impurity

→ potential to detect 42.1% frauds with 0.8% false positives

Automated fraud detection

Singletons are legitimate

Clusters are suspicious

- Augment fresh unlabeled orders with older labelled fraud prior to clustering
- Detect as fraud all orders in a cluster that include at least one labelled fraud

Fraud detection accuracy

Datasets

- 6M real orders from Zalando online retailer
- 5 countries
- 35 days

Detection rate (clustered)	Detection rate (all fraud)	Precision	False positive rate
62.6 %	26.4%	35.3%	0.1%

False positives

- not "fraud"...
- ... but 94.7% are returned, canceled or partly unpaid orders

Summary

Novel clustering algorithm for categorical data: RecAgglo

- Scalable
- Generates small clusters
- Designed for grouping organized fraud

Assessment on 6M orders from top European online apparel retailer: Zalando

- Detect 26.4% of fraud
- Generate 0.1% false alarms
- 95% of false alarms are problematic

