Koinonia: Verifiable E-Voting with Long-term Privacy

Huangyi Ge Purdue University

Joint work with Sze Yiu Chau, Victor E Gonsalves, Huian Li, Tianhao Wang, Xukai Zou, Ninghui Li

Encryption-based E-Voting System

Ensuring Privacy

Approach 1: Use shuffling/mixing

- First shuffle the ballot, then decrypt the ballots
- Publish a ZK proof of shuffling correctness
- Can use multiple shuffling servers.

Approach 2: Use homomorphic encryption

- "Add up" all ballots, then decrypt
- Can use threshold crypto.

Weakness:

• Encrypted ballots may be decrypted in future.

Secret-Sharing-based E-Voting System

System Architecture in Koinonia

Additive Secret Sharing for Privacy

Tallying on Koinonia

Tallying on Koinonia

Example of 5 Voters and 4 Tellers

Voter	Vote	Ballot Shares			
		T ₁	T ₂	T ₃	T ₄
V ₁	1	V _{1,1}	V _{1,2}	V _{1,3}	V _{1,4}
V ₂	0	V _{2,1}			
V ₃	1	V _{3,1}			
V ₄	1	V _{4,1}			
V ₅	0	V _{5,1}			
Bulletin Board	3	Agg ₁	Agg ₂	Agg₃	Agg ₄
	Outcome		Compute the sum of Aggregates		

Integrity Using Cryptographic Commitments

Example of 5 Voters and 4 Tellers

Well-formed Ballot of Koinonia

Example of 5 Voters and 4 Candidates

Publishing on Koinonia

Unbounded Adversary

• Quantum-Safe Crypto is Broken

Unbounded Adversary

Other Security Considerations

- Teller Deny of Service (DoS)
- Teller manipulating ballot shares
- Missing Ballot Attack
- Ballot Stuffing Attack

Implementation

- Koinonia system
 - Node.js
- Koinonia Libraries
 - Share and Ballot Generation, Verification Functions
 - Client: SJCL (Stanford Javascript Crypto Library)
 - Server: Native Code Optimization
 - Node.js C++ Addons
- Secure Communication and Future Privacy
 - Open Quantum Safe (OQS) with Stunnel²

Performance

- · One position, two candidates, and three Tellers
- 8 core i7-3770 3.40 GHz CPU, 16GB Ram

	Client	
Voter	301ms ± 4.9%	Construct shares and ballot
	Server	
Teller	2.37ms ± 22%	Accept a share
ESP	5.77ms ± 27%	Accept a ballot
Verifier	11s	10,000 Ballots, 8 threads

Verification Benchmark

Conclusion

- Koinonia
 - Current integrity and Future privacy
 - Additive secret sharing, Pedersen commitment, and WIP
- Open source
 - Light weighted
 - https://github.com/gehuangyi20/Koinonia

Thank You

Huangyi Ge

