Full Program »
OPay: an Orientation-based Contactless Payment Solution Against Passive Attacks
The usage of contactless payment has surged in recent years, especially during the Covid time. Passive relay (PR) attacks against a contactless card are a well-known threat, which has been extensively studied in the past with many solutions available. However, with the mass deployment of mobile point-of-sale (mPoS) devices, there emerges a new threat, which we call mPoS-based passive (MP) attacks. In an MP attack, the various components required in an RP attack, including an NFC reader, a wireless link, a remote card emulator, and a remote payment terminal, are conveniently combined into one compact device, hence the attack becomes much easier. Since the attacker and the victim are in the same location, the previous distance bounding or ambient sensor-based solutions are no longer effective. In this paper, we propose a new orientation-based payment solution called OPay. OPay builds on the observation that when a user makes a legitimate contactless payment, the card and the terminal surface are naturally aligned, but in an attack scenario, they are less likely. This allows us to distinguish the legitimate payments from passive attacks based on measuring the alignment of orientations. We build a concrete prototype using two Arduino boards embedded with NFC and motion sensors to act as a card and a payment terminal respectively. To evaluate the feasibility, we recruited twenty volunteers in a user study. Participants generally find OPay easy to use, fast and reliable. Experiments show that OPay can substantially reduce the attack success rate by 85-99% with little inconvenience to real users. To our best knowledge, OPay is the first solution that can prevent both the PR and MP attacks, while preserving the existing usage model in contactless payment.