Annual Computer Security Applications Conference (ACSAC) 2021

Full Program »

Security of Multicarrier Time-of-Flight Ranging

OFDM is a widely used modulation scheme. It transmits data over multiple subcarriers in parallel, which provides high resilience against frequency-dependent channel drops (fading) and achieves high throughput. Due to the proliferation of OFDM-enabled devices and the increasing need for location information, the research community has suggested using OFDM symbols for secure (time-of flight) distance measurements. However, a consequence of relying on multiple subcarriers is long symbols (time-wise). This makes OFDM systems not a natural fit for secure ranging, as long symbols allow an attacker longer observation and reaction times to mount a so-called early-detect/late-commit attack. Despite these concerns, a recent standardization effort (IEEE 802.11az) envisions the use of OFDM-based signals for secure ranging. This paper lays the groundwork for analyzing OFDM time-of-flight measurements and studies the security guarantees of OFDM-based ranging against a physical-layer attacker. We use BPSK and 4-QAM, the most robust configurations, as examples to present a strategy that increases the chances for early-detecting the transmitted symbols. Our theoretical analysis and simulations show that such OFDM systems are vulnerable to early-detection/late-commit attacks, irrespective of frame length and number of subcarriers. We identify the underlying causes and explore a possible countermeasure, consisting of orthogonal noise and randomized phase.

Patrick Leu
ETH Zurich

Martin Kotuliak
ETH Zurich

Marc Roeschlin
ETH Zurich

Srdjan Capkun
ETH Zurich

Paper (ACM DL)

Slides

Video

 



Powered by OpenConf®
Copyright©2002-2021 Zakon Group LLC