
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

In the rapidly evolving landscape of security vulnerabilities, security analysts and researchers require
novel approaches to establish connections between semantics of software vulnerabilities and their
presence in real-world systems. The concept of a knowledge graph, initially introduced by Google, has
found many applications in representing diverse forms of vulnerability information. However, its
untapped potential for comprehensively capturing software defects and vulnerabilities within real
systems has yet to be fully investigated.
In this poster, we propose a novel approach of Program Knowledge Graph that expands the
vulnerability knowledge with program graphs (e.g., call graph, data flow, etc.) extracted from the
implementation of security-critical systems. Further, leveraging prompt tuning with large language
models (LLMs), we propose to automatically generate queries that assess the presence of specific
vulnerabilities hidden underneath the complex systems. This methodology empowers developers to
scrutinize and fortify their implementation against potential security risks at runtime. While existing
work demands manual query construction, our approach seeks to alleviate this challenge by harnessing
LLMs for query auto-generation.

01 INTRODUCTION

02 SYSTEM OVERVIEW

04 CONCLUSION

An example of Program Knowledge Graph is shown in Figure 2, where nodes colored in pink show
the call graph of the code example in Figure 3 while other nodes comprise the extracted vulnerability
data. The arrows within the call graph symbolize calling relationships. Program Knowledge Graph
creates additional edges connecting nodes from the vulnerability dataset to the vulnerable function
calls extracted from the program.
Figure 4 showcases a Cypher query that identifies the weakness of CWE-415 double free in the C code
shown in Figure 3. Specifically, the query checks if a program calls free twice on the same memory
address, potentially corrupting the program’s memory management data structures.

03 EVALUATION

We propose the concept of Program Knowledge Graph by integrating program graph and security data
and subsequently auto-generating queries by leveraging LLM's prompt tuning to discover
vulnerabilities within software code. We are going to continue working on this research project to
further investigate the systematic methodology of automating the query generation process by
leveraging LLMs.

Our proposed approach of using program knowledge graph to uncover software vulnerabilities 
encompasses a series of structured stages (Figure 1):
• Step 1: Known vulnerability data pertaining to Common Vulnerabilities and Exposures (CVE) and

Common Weakness Enumeration (CWE) are methodically sourced from a vulnerability database
and stored in a graph database.

• Step 2: Software programs can be comprehensively analyzed and understood using graphs, where
nodes represent program components, and edges depict relationships or flows between them.

• Step 3: Program Knowledge Graph amalgamates vulnerability data and program graph, storing
them in a graph database. Each node within this graph represents either a security data entity or a
procedure call, with each edge signifying the relationships between source and destination nodes.
Nodes and edges can also have attributes to store additional information, such as severity scores and
affected products.

• Step 4: We utilize Large Language Model (LLM) prompts to generate queries for checking
vulnerabilities in the program. Precisely, developers and security analysts can use LLMs to generate
complex queries pertinent to the intersection of vulnerability data and programs.

1University of California, Irvine 2University of California, Los Angeles

Mengjie Xie!, Tamjid Al Rahat", Wei Wang", Yuan Tian"

Using Program Knowledge Graph to Uncover 
Software Vulnerabilities

Figure 1: Schematic architecture of our Program Knowledge Graph to detect vulnerabilities in 
software programs.

Figure 2: An example of Program Knowledge Graph contains the call graph of the example C code in 
Figure 3 on the right side (colored in pink) and the security data displayed on the left side with CWE-
415 pointing to a function call free causing double free vulnerability.

Figure 3: C code example with the 
vulnerability of calling free twice on the 
same memory address.

MATCH (cwe:CWE {`CWE-ID`: “CWE-415”})
MATCH (node:CallGraph {Name: cwe.`events`})
WITH node.A AS arg1, COLLECT(node) AS sarg1
WITH arg1, sarg1, SIZE(sarg1) AS nCount
WHERE nCount > 1
UNWIND sarg1 AS vulNodes
MATCH path=(CallGraph {Name: “main”})-[*]->(vulNodes)
RETURN path

Figure 4: Example of a Cypher query to detect a double free 
vulnerability in the code example in Figure 3.

CWE Name Program events Code samples

CWE-242 Use of inherently dangerous function gets, atoi, atol, atof 4

CWE-401 Missing memory release after effective lifetime malloc 1

CWE-415 Double free free 2

CWE-467 Use of sizeof() on a pointer type sizeof 1

CWE-477 Use of obsolete function getpw, auto_ptr 3

CWE-479 Signal handler use of a non-reentrant function syslog 1

CWE-558 Use of getlogin() in multithreaded application getlogin 1

CWE-1341 Multiple releases of same resource or handle fclose, free 2

To evaluate our proposed method, we collected 15 code examples in C/C++ as benchmarks from 
CWE sites associated with 8 common software weaknesses, as shown in Table 1. 
The process of our evaluation
• We leverage Neo4j, a popular open-source graph database, as our backend for graph traversal. 
• We provide the CSV formatted dataset of CVEs and CWEs, along with the call graphs. 
• By utilizing Cypher, we successfully identified the weakness of 14 out of 15 benchmarks. 
• Limitation: We could not identify the weakness of CWE-401, as it requires the inclusion of data 

flow graphs within the program graph, as call graphs do not suffice. We plan to expand our 
approach to include various program graph types to detect more complex vulnerabilities and extend 
our evaluation by comparing them with existing vulnerability detection methods.

Table 1: Our queries for the Program Knowledge Graph successfully identified 14 out of 15 
weaknesses in the code samples we collected from 8 categories of CWEs.

CVE

CWE

Prevalent 
coding errors Vulnerable 

functions
Provide insights

Potential 
impacts

Program graphs
Software 
programs

Call graphs,
Control flow graphs,

Data flow graphs
Parsed Collected into

Program graphs

Vulnerability
data Graph database

Program Knowledge Graph
Merge

Without prior 
knowledge of any query

Prompt: what 
vulnerability to detect

LLM
Corresponding queries 

pertinent to the Program 
Knowledge Graph


