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About us

• PRA Lab is a research group focused on machine learning for security 
applications. The cybersecurity division includes

– Web Security

– Malware detection, analysis and classification

– Network Security

– Vulnerability and threat detection
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• Srdnlen is a CTF team on the top 50 of the global scoreboard of CTFTime
• We participate in international cybersecurity competitions with various topics

– Web security
– Software security
– Forensics
– Cryptography

• We publish our results on  www.srdnlen.it

About us
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Template Engines - Use Case

• Template Engines are used to dynamically generate pages, their usage is 
nowadays essential

– To generate dynamic dashboards with user data

– To list products in ecommerce

– Blogs, forums, social networks
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Template Engines

Template Engines are software components, typically provided as libraries or 
modules

They parse and manipulate strings or files according to predefined syntactic rules

They apply tokenization, breaking strings or files into structured representations. 
This process allows binding data to placeholders, applying transformations, and 
executing conditional logic and loops
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Template Engines - Popularity
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Popularity of template engines in terms of GitHub stars and NPM weekly downloads (JavaScript)
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Template Engines
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Number of repositories resulting from the query search “template engine” on GitHub
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Template Engines - Secure Usage

In Jinja2 (Python) the following code renders a template

8

Example:

if username=John the output is Welcome, John!

if username={{7*7}} the output is Welcome, {{7*7}}!
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Template Engines - Vulnerable Usage

The template is embedding directly the user input

This is dangerous since the user is now allowed to execute template 
directives
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Example

If username=John the output is Welcome, John!

If username={{7*7}} the output is Welcome, 49!
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Server-Side Template Injection (SSTI)

• Discovered in 2015, but possibly already present
• Different types, similarly to XSS and SQLi

– Non-persistent

– Persistent

– Non-Blind

– Blind
• Many possible consequences

– Sensitive data leaks

– Unauthorized access

– DoS attacks

– Cross-Site Scripting

– Remote Code Execution
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SSTI to RCE - Why?

Template engines allow to perform seemingly innocent operations 

• Access objects attributes

• Call objects functions
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SSTI to RCE - Why?

• But they can be dangerous since introspective attributes and 
functions exist
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SSTI to RCE

Since Jinja2 allows to access  introspective attributes, users can inject the 
following payload to obtain RCE
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{{config.__class__.__init__.__globals__[‘os’].popen(‘ls’).read()}}

Global Object Python Introspective Attributes OS Module Command Exec Output

{{‘’.__class__.__mro__()[1].__subclasses__()[N](‘ls’, shell=True, stdout=-1)}}

Object Python Introspective Attributes Offset Command Execution

“config” is a Flask object that contains configuration parameters

N is the offset where the subprocess.Popen class is located, it can 
change depending on the application
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Template Engines - Popularity VS Security

Remember this table? Let’s add one more column
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SSTI - In the Wild

• Most of them lead to RCE 
• The bounties can be very high
• Different engines involved

15

A list of SSTI reports on HackerOne
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SSTI - CVEs

SSTI corresponds to CWE-1336 under the CWE-94 (Code Injection)

The base score of SSTI CVEs is very high on average and RCE is often present
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A list of CVEs related to SSTI
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SSTI - Seminal Works
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Template Engines - Scenarios

• Unintentional

– The web developer introduces SSTI unintentionally

– In this case avoiding SSTI is the main focus

• Intentional

– CMS

– Bulk emails

– Website as a service (Github Pages)

– Is essential to select a secure template engine
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Demo

19

Two examples

– A simple website with unintentional SSTI (Python Jinja2)

– A CMS with intentional SSTI (who uses the CMS should not be 
allowed to access the underlying machine - Python Jinja2 vs 
Django) 
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The Importance of Selection

The demo showed how important is to select a template engine properly

• Some popular engines are known to allow RCE

• What if I’m using a template engine that is less popular or custom?

We need a general methodology to assess if a template engine allows 
RCE or not
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Template Analysis
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RCE Paths and Security Features
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4 RCE exploit types

• Direct code execution

• Tags or functions for code execution

• Introspective

• Bugs or vulnerabilities

4 security features types

• Sandbox

• No function calls

• Limited code execution

• No RCE paths
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Making the Tests

23

• The time needed to find and test 34 engines was of 4 weeks

• Some tests could take up to 3-4 hours whilst others 2-3 days (Java 
was especially difficult)

Steps involved:

a. Search the template engine documentation/repo, it contains 
usage examples of the engine

b. Write an SSTI vulnerable piece of code

c. Host the web application/execute the vulnerable code

d. Test exploits and security
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Finding an RCE Path - Jinja2 Example + Demo
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Results
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• We analyzed 34 template engines in 8 different programming 
languages

– 9 were never analyzed before and 8 allowed RCE

– 31 allow or allowed RCE
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Results - details
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Language Name Delimiters
Already 

analyzed
Known RCE RCE exploit RCE Exploit kind Security features

Python

Jinja2 {{ }} ✓ ✓ ✓ Introspective -

Cheetah $ and # ✗ ✗ ✓ Tag for code execution -

Django {{  }} ✓ ✗ ✗ - Limited code exec.

Genshi and Kid ${} ✗ ✗ ✓ Tag for code execution -

Mako <% %> and $ ✓ ✓ ✓ Tag for code execution -

web2py {{= }} ✗ ✗ ✓ Introspective -

Tornado {{ }} and {% %} ✓ ✓ ✓ Tag for code execution -

Chameleon ${ } ✗ ✗ ✓ Introspection -

Pyratemp @! !@ ✗ ✗ ✗ - Sandbox
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The Future of SSTI and Template Engines
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– Automatic ways to find RCE

• Difficult, too many programming languages

– Developing solutions to mitigate RCE in template engines

• Sandboxes can be escaped

– Developing template engines that do not allow RCE

• Again, no sandboxes

• Removing functions or attributes access has an impact

– Developing tools to detect SSTI that are not dependent on the 
engine
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Thank You!

lorenzo.pisu@unica.it

giacinto@unica.it
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