
1

Template Engines: A Methodology for Assessing

Server-Side Code Execution Vulnerabilities

Lorenzo Pisu,

Giorgio Giacinto

PRA lab @ University Of Cagliari, Italy

https://sites.unica.it/pralab/University Of Cagliari

About us

• PRA Lab is a research group focused on machine learning for security
applications. The cybersecurity division includes

– Web Security

– Malware detection, analysis and classification

– Network Security

– Vulnerability and threat detection

2

https://sites.unica.it/pralab/University Of Cagliari

• Srdnlen is a CTF team on the top 50 of the global scoreboard of CTFTime
• We participate in international cybersecurity competitions with various topics

– Web security
– Software security
– Forensics
– Cryptography

• We publish our results on www.srdnlen.it

About us

3

https://sites.unica.it/pralab/University Of Cagliari

Template Engines - Use Case

• Template Engines are used to dynamically generate pages, their usage is
nowadays essential

– To generate dynamic dashboards with user data

– To list products in ecommerce

– Blogs, forums, social networks

4

https://sites.unica.it/pralab/University Of Cagliari

Template Engines

Template Engines are software components, typically provided as libraries or
modules

They parse and manipulate strings or files according to predefined syntactic rules

They apply tokenization, breaking strings or files into structured representations.
This process allows binding data to placeholders, applying transformations, and
executing conditional logic and loops

5

https://sites.unica.it/pralab/University Of Cagliari

Template Engines - Popularity

6

Popularity of template engines in terms of GitHub stars and NPM weekly downloads (JavaScript)

https://sites.unica.it/pralab/University Of Cagliari

Template Engines

7

Number of repositories resulting from the query search “template engine” on GitHub

https://sites.unica.it/pralab/University Of Cagliari

Template Engines - Secure Usage

In Jinja2 (Python) the following code renders a template

8

Example:

if username=John the output is Welcome, John!

if username={{7*7}} the output is Welcome, {{7*7}}!

https://sites.unica.it/pralab/University Of Cagliari

Template Engines - Vulnerable Usage

The template is embedding directly the user input

This is dangerous since the user is now allowed to execute template
directives

9

Example

If username=John the output is Welcome, John!

If username={{7*7}} the output is Welcome, 49!

https://sites.unica.it/pralab/University Of Cagliari

Server-Side Template Injection (SSTI)

• Discovered in 2015, but possibly already present
• Different types, similarly to XSS and SQLi

– Non-persistent

– Persistent

– Non-Blind

– Blind
• Many possible consequences

– Sensitive data leaks

– Unauthorized access

– DoS attacks

– Cross-Site Scripting

– Remote Code Execution

10

https://sites.unica.it/pralab/University Of Cagliari

SSTI to RCE - Why?

Template engines allow to perform seemingly innocent operations

• Access objects attributes

• Call objects functions

11

https://sites.unica.it/pralab/University Of Cagliari

SSTI to RCE - Why?

• But they can be dangerous since introspective attributes and
functions exist

12

https://sites.unica.it/pralab/University Of Cagliari

SSTI to RCE

Since Jinja2 allows to access introspective attributes, users can inject the
following payload to obtain RCE

13

{{config.__class__.__init__.__globals__[‘os’].popen(‘ls’).read()}}

Global Object Python Introspective Attributes OS Module Command Exec Output

{{‘’.__class__.__mro__()[1].__subclasses__()[N](‘ls’, shell=True, stdout=-1)}}

Object Python Introspective Attributes Offset Command Execution

“config” is a Flask object that contains configuration parameters

N is the offset where the subprocess.Popen class is located, it can
change depending on the application

https://sites.unica.it/pralab/University Of Cagliari

Template Engines - Popularity VS Security

Remember this table? Let’s add one more column

14

https://sites.unica.it/pralab/University Of Cagliari

SSTI - In the Wild

• Most of them lead to RCE
• The bounties can be very high
• Different engines involved

15

A list of SSTI reports on HackerOne

https://sites.unica.it/pralab/University Of Cagliari

SSTI - CVEs

SSTI corresponds to CWE-1336 under the CWE-94 (Code Injection)

The base score of SSTI CVEs is very high on average and RCE is often present

16

A list of CVEs related to SSTI

https://sites.unica.it/pralab/University Of Cagliari

SSTI - Seminal Works

17

https://sites.unica.it/pralab/University Of Cagliari

Template Engines - Scenarios

• Unintentional

– The web developer introduces SSTI unintentionally

– In this case avoiding SSTI is the main focus

• Intentional

– CMS

– Bulk emails

– Website as a service (Github Pages)

– Is essential to select a secure template engine

18

https://sites.unica.it/pralab/University Of Cagliari

Demo

19

Two examples

– A simple website with unintentional SSTI (Python Jinja2)

– A CMS with intentional SSTI (who uses the CMS should not be
allowed to access the underlying machine - Python Jinja2 vs
Django)

https://sites.unica.it/pralab/University Of Cagliari

The Importance of Selection

The demo showed how important is to select a template engine properly

• Some popular engines are known to allow RCE

• What if I’m using a template engine that is less popular or custom?

We need a general methodology to assess if a template engine allows
RCE or not

20

https://sites.unica.it/pralab/University Of Cagliari

Template Analysis

21

https://sites.unica.it/pralab/University Of Cagliari

RCE Paths and Security Features

22

4 RCE exploit types

• Direct code execution

• Tags or functions for code execution

• Introspective

• Bugs or vulnerabilities

4 security features types

• Sandbox

• No function calls

• Limited code execution

• No RCE paths

https://sites.unica.it/pralab/University Of Cagliari

Making the Tests

23

• The time needed to find and test 34 engines was of 4 weeks

• Some tests could take up to 3-4 hours whilst others 2-3 days (Java
was especially difficult)

Steps involved:

a. Search the template engine documentation/repo, it contains
usage examples of the engine

b. Write an SSTI vulnerable piece of code

c. Host the web application/execute the vulnerable code

d. Test exploits and security

https://sites.unica.it/pralab/University Of Cagliari

Finding an RCE Path - Jinja2 Example + Demo

24

https://sites.unica.it/pralab/University Of Cagliari

Results

25

• We analyzed 34 template engines in 8 different programming
languages

– 9 were never analyzed before and 8 allowed RCE

– 31 allow or allowed RCE

https://sites.unica.it/pralab/University Of Cagliari

Results - details

26

Language Name Delimiters
Already

analyzed
Known RCE RCE exploit RCE Exploit kind Security features

Python

Jinja2 {{ }} ✓ ✓ ✓ Introspective -

Cheetah $ and # ✗ ✗ ✓ Tag for code execution -

Django {{ }} ✓ ✗ ✗ - Limited code exec.

Genshi and Kid ${} ✗ ✗ ✓ Tag for code execution -

Mako <% %> and $ ✓ ✓ ✓ Tag for code execution -

web2py {{= }} ✗ ✗ ✓ Introspective -

Tornado {{ }} and {% %} ✓ ✓ ✓ Tag for code execution -

Chameleon ${ } ✗ ✗ ✓ Introspection -

Pyratemp @! !@ ✗ ✗ ✗ - Sandbox

https://sites.unica.it/pralab/University Of Cagliari

The Future of SSTI and Template Engines

27

– Automatic ways to find RCE

• Difficult, too many programming languages

– Developing solutions to mitigate RCE in template engines

• Sandboxes can be escaped

– Developing template engines that do not allow RCE

• Again, no sandboxes

• Removing functions or attributes access has an impact

– Developing tools to detect SSTI that are not dependent on the
engine

https://sites.unica.it/pralab/University Of Cagliari 28

Thank You!

lorenzo.pisu@unica.it

giacinto@unica.it

	Slide 1: Template Engines: A Methodology for Assessing Server-Side Code Execution Vulnerabilities
	Slide 2: About us
	Slide 3: About us
	Slide 4: Template Engines - Use Case
	Slide 5: Template Engines
	Slide 6: Template Engines - Popularity
	Slide 7: Template Engines
	Slide 8: Template Engines - Secure Usage
	Slide 9: Template Engines - Vulnerable Usage
	Slide 10: Server-Side Template Injection (SSTI)
	Slide 11: SSTI to RCE - Why?
	Slide 12: SSTI to RCE - Why?
	Slide 13: SSTI to RCE
	Slide 14: Template Engines - Popularity VS Security
	Slide 15: SSTI - In the Wild
	Slide 16: SSTI - CVEs
	Slide 17: SSTI - Seminal Works
	Slide 18: Template Engines - Scenarios
	Slide 19: Demo
	Slide 20: The Importance of Selection
	Slide 21: Template Analysis
	Slide 22: RCE Paths and Security Features
	Slide 23: Making the Tests
	Slide 24: Finding an RCE Path - Jinja2 Example + Demo
	Slide 25: Results
	Slide 26: Results - details
	Slide 27: The Future of SSTI and Template Engines
	Slide 28

