
The emergence of Trusted Execution Environments (TEE) provides
a promising path to protect the confidentiality of remote computing.
How to use TEE to protect legacy applications is a hot topic. Until
now, a wide range of solutions have been proposed to protect a
specific class of computations on a specific TEE environment: Some
works ported a specific application to TEE (e.g., EnclaveDB on Intel
SGX). Some works ported a language interpreter or language library
to TEE to support the applications written in that language (e.g.,
RUST-SGX, Python-SGX, GoTEE, Civet, etc.). Some works
supported more general binary executions by porting library OS or C
library to TEE (e.g., SCONE, Graphene-SGX, SGX-LKL, etc.). All
those works have two major limitations: 1) Moving applications,
language interpreters or libraries to TEE leads to large trusting base,
which causes security loopholes; 2) Each work focused on a specific
(class of) application(s), which cannot be transferred to other
applications, languages, or libraries.

In this work, we introduce a language neutral solution, namely
EnCloak, which can support multiple programming languages while
maintaining small trusting base. To achieve this goal, our solution
identifies sensitive statements in the source code, translates them
into the proposed language neutral, platform neutral Enclave In-
structions(EIs) and executes them in the TEE, called Cloak Enclave.
To execute the EIs in TEE, we implement the EI run-time system in
Cloak Enclave, which manages sensitive variables involved in the
sensitive statements and executes the translated EIs. The
architecture of EnCloak is shown in Fig. 1.

General and secure support of legacy computations on TEE
 Yongzhi Wang

Yongzhi.Wang@tamucc.edu
Department of Computer Science, Texas A&M University-Corpus Christi

Introduction
To use EnCloak to protect sensitive data in a remote computing, the
user first tags sensitive sources in the source code. The EnCloak
then performs taint analysis to identify all sensitive variables. After
that, EnCloak replaces each statement 𝑠 containing sensitive
variables with a designed function call that will be executed in Cloak
Enclave. EnCloak supports two types of sensitive function calls:
update and evaluate.

𝑢𝑝𝑑𝑎𝑡𝑒(𝑖𝑠,𝑢𝑢𝑖𝑑,𝑜𝑢𝑢𝑖𝑑) (1)
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖𝑠,𝑢𝑢𝑖𝑑,𝑜𝑢𝑢𝑖𝑑) (2)

The former will update sensitive variables in the Cloak Enclave
based on the variables outside of TEE. The later is for the code
outside of TEE to evaluate a branch condition based on the variable
values inside of TEE. In the above function calls, 𝑖𝑠 is an identifier of
statement 𝑠. 𝑢𝑢𝑖𝑑 uniquely identifies a function execution of the
transformed program. It helps locating sensitive variables managed
in the Cloak Enclave. For the same function that are executed two
times, the two executions will have distinct 𝑢𝑢𝑖𝑑 to distinguish each
other.

To manage sensitive variables and support the execution of EIs, we
design a runtime environment in the Cloak Enclave. In the runtime
environment, sensitive variables from different function executions or
objects are properly isolated and managed, as shown in Fig. 2.

The format of EIs are extended from three address code. An
example of EI can be

𝑖𝑠 :< 𝐴𝑆𝑆𝐼𝐺𝑁,⋄,𝑙𝑒𝑓𝑡,𝑟𝑖𝑔h𝑡,𝑑𝑒𝑠𝑡 > (3)
, where 𝑖𝑠 is the reference index that is used to match 𝑖𝑠 in the
function call listed in (1) and (2). We extend the format of EI to
support complex features including inter-procedure function
invocation, multi-dimensional arrays, etc.

System Design Generality
We have implemented a prototype system based on the design of
EnCloak, which support Java programs running on Intel SGX. The
design of EnCloak can be transferred to other languages and TEE
platforms. With the language and platform neutral EI, to support
computations written in a specific language on a specific TEE,
developers only need to write a parser to translate the language to EI
and implement a runtime to support EI on that TEE.

Security
EnCloak treats security as the first-class citizen. Since it only moves
sensitive statements to TEE, it significantly reduces the trusting base.
Additionally, the execution of EIs and access of sensitive variables
can be designed to satisfy different security goals, e.g., memory
access obliviousness.

mailto:Yongzhi.wang@tamucc.edu

