
Making a Decompiler out of a Compiler
Ali Ahad, Yonghwi Kwon
University of Maryland

Abstract:
We propose a novel technique for Python decompilation that aims to produce semantically equivalent
source code by leveraging the Python compiler. It is based on the observation that two equivalent binary
files, produced from the same compiler, tend to have semantically equivalent source files. Hence, to
decompile a binary, we only synthesize a source file that, after compilation, is equivalent to the binary in
question. Unfortunately, synthesizing such a file randomly is both inefficient and time-consuming.
Meanwhile, relying only on `large' corpora of code-to-binary mappings is unrealistic as they fail on unseen
binaries. To address these, we introduce iterative Python source synthesis and mutations with similarity
feedback to synthesize a source file that, after compilation, produces an equivalent binary. By doing so, our
work aims to solve the limitations of current decompilation techniques and learning-based techniques.

Compiler

Code-to-Binary
Database

Synthesized
Code

Target
Binary

Mutation
Rules

Synthesizer
Output
Binary

Mismatch Feedback

ComparisonSynthesis

Success

Motivation:
• Decompilers based off of heuristics have errors.
• Malware writers can exploit to trick forensic analyst or make forensic analysis time consuming.

Intuition:
Leverage compiler to find synthesized code is equivalent to target binary.

Compiler

Source Code’ Binary’

Source Code’’ Binary’’

Source Code’’’ Binary’’’

Source Code’’’’ Binary’’’’

Test 1

Test 2

Test 3

Test 4

Far from
Binary X

Close to
Binary X

Very Close to
Binary X

Binary X

DecompilerBinary X ???

Overall Solution:

How to get the source?

Synthesize source that
compiles to Binary X

decompilation (fail)

Explicit Error: Decompilation failure
with an explicit error message

Original Program Decompiled Program
Implicit Errors: Decompiled with
Implicit Errors (the ‘else:’ blocks)

decompilation

Original Program Decompiled Program

