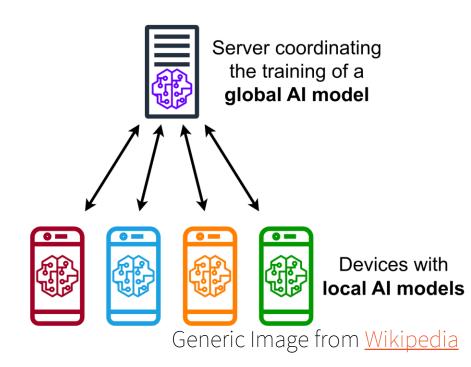


FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks

J. CASTILLO¹, P. RIEGER³, H. FEREIDOONI³, The University of Texas 1 Q. CHEN², A. SADEGHI³ RioGrande Valley



Problem Statement

- Machine Learning (ML) is very popular for different applications
 - <u>Problem</u>: Data collection is difficult due to security and privacy concerns
 - <u>Solution:</u> Federated Learning (FL)
- FL aims to solve the privacy concerns by distributing the learning process
 - Clients train model with local private data local model
 - Aggregation server compiles a new model using all local models global model

Privacy Problem in FL

- You must trust the aggregation server
- <u>Consequences:</u> Adversary can analyze local models to retrieve private data from clients
- Security Problem in FL
 - You must trust the learning process
 - <u>Consequences:</u> Adversary can poison data and/or model to skew the learning process

Adversary Model

Privacy Threat

- White-box Inference Attack *honest-but-curious*
- Goal: Adversary extracts sensitive information from every local model before aggregation
- <u>Capabilities:</u> Full control of aggregation server

Security Threat

- Targeted Poisoning Attack *backdoors*
- <u>Goal:</u> Adversary manipulates loss function to train models to behave normally all the time except when a specific set of conditions, e.g., trigger, is present in the input

• <u>Capabilities:</u> Control of *f* clients out of *n* total clients such that $f = \frac{n}{2}$

Existing Solutions

Privacy-preserving Defenses

- Secure Multi-Party Computation (SMPC) based Solutions
- Multi-party Homomorphic Encryption Solution

Poisoning Defenses

- Untargeted Poisoning Solutions
- Backdoor Solutions

Hybrid Defenses

- SMPC + Poisoning Solutions
- TEE + Poisoning Solutions

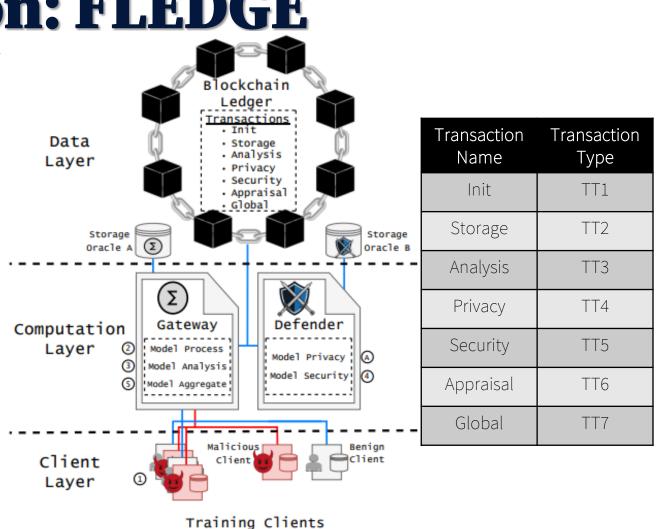
Research Gap – Lack of accountability

- Malicious aggregation service
- Malicious training clients

Requirements

- P1: Utility Retention
 - Defense must preserve model utility
- P2: Computation Availability
 - Private model analysis and aggregation shall not fail due to limited resource availability
- **S1:** Effective Poisoning Mitigation
 - Defense must detect poisoning attempts
 - Defense must mitigate their impact on the global model
 - Defense must preserve model utility
- S2: Autonomous Behavior
 - Defense must be flexible to automatically adjust to different adversarial strategies

Challenges


- •C1: Leverage Blockchain to improve trust between computation parties
- **C2:** Combine Homomorphic Encryption and Blockchain to limit the ledger's transparency
- •C3: Solve the dilemma of preventing the server from analyzing the local models against inference attacks while having to inspect the local models to detect poisoned models
- **C4:** Discriminate poisoned models to prompt disciplinary actions
- **•C5:** Credit clients over training rounds to make malicious clients accountable for their attacks

Proposed Solution: FLEDGE

Contributions

- 1. Strong privacy guarantees via <u>Blockchain Two-Contract</u> <u>Computation</u> (BT2C)
 - BT2C Semi-honest relationship between 2 smart contracts using CKKS
 - Resilient against white-box inference attacks
- 2. Mitigation of poisoning attacks via <u>G-KDE clustering</u>
 - Evaluated on 4 datasets: MNIST, Fashion-MNIST, CIFAR10 and Reddit
- 3. <u>Compensation algorithm</u> via cryptocurrency
 - Offer incentives to benign aggregation services and benign training clients

Assumptions

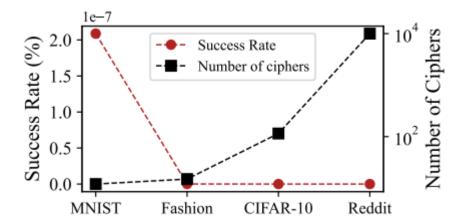
A1: Consensus Protocol is <u>NOT</u> compromised

- Blockchain is the platform of our solution
- We rely on default consensus protocol Raft
- A2: Non-colluding Servers
 - Servers engage in semi-honest relationship to enable privacy
 - Adversary cannot control both servers simultaneously
- **A3:** Clients Perform Encryption CKKS
 - Clients are summed to have sufficient computational resources to perform encryption

Workflow

- Step 0 : Initialization
 - Interested party (owner) proposes learning task of T training rounds with reward R for the training session
 - Owner submits global model parameters (TT7) to be trained
 - Owner submits TT1 to start training session
- Step 1: Model Encryption
 - Client *i* trains model *W_i* using private (local) data
 - Client i injects noise δ_i to offset W_i s.t. ${W'}_i = W_i + \delta_i$
 - Client i encrypts W'_i and δ_i $(W_i^*$ and $\delta_i^*,$ respectively) and submits them to GWC
- Step 2: Model Process
 - \circ GWC stores W_i^* into storage oracle A and generates model ID
 - $\circ\,$ GWC uses model ID, client ID and δ_i^* to submit TT2

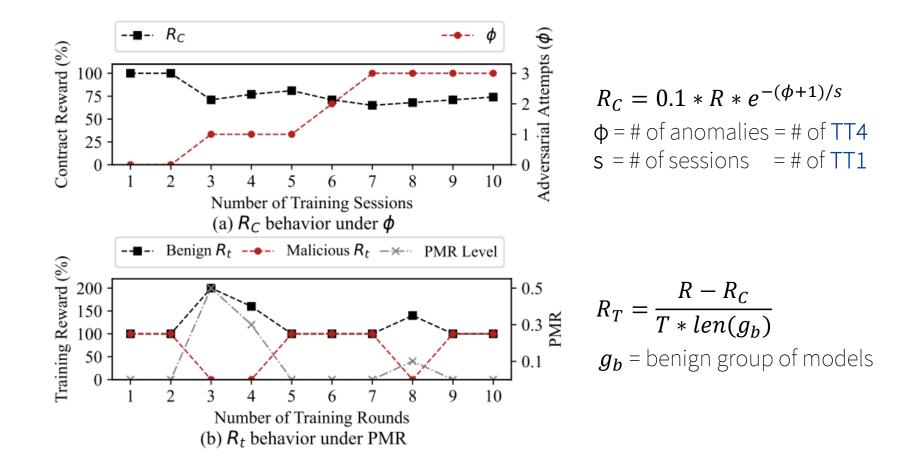
- •Step 3: Model Analysis
 - GWC uses δ_i^* to offset G_{t-1}^* s.t. $G_{t-1}^* = G_{t-1}^* + \delta_i^*$
 - GWC computes cosine distance c_i between W_i^* and G_{t-1}^* using DC as computation party <u>BT2C: Private Cosine Distance (Alg. 1)</u>
 - GWC uses *c_i* and model ID to submit **TT3**


Step A: Model Privacy – <u>BT2C: Secure Decryption (Alg. 2)</u>

- DC checks if GWC is attempting to misbehave **TT4**
- DC adjusts reward for GWC to remove malicious intent
- Step 4: Model Security
 - DC applies <u>Poisoning Defense (Alg. 3)</u> to remove malicious models
 - DC adjusts rewards for training clients to remove malicious intent
 - DC uses model IDs and rewards to submit TT5 and TT6, respectively
- Step 5: Model Aggregate
 - GWC use filtered models to compute new global model G_t and G_t^* <u>BT2C: Private Aggregation (Alg. 4)</u>
 - GWC uses new models to submit TT7

Evaluation: Inference Attacks

Application		I	C	WP
Datasets	MNIST	Fashion	CIFAR-10	Reddit
#Records	70K	70K	60K	20.6M
Model	CNN	CNN	ConvMixer _{256/3}	LSTM
#params	~ 23K	~ 29K	$\sim 234 \mathrm{K}$	$\sim 20M$
#ciphers	12	15	115	$\sim 10.1 \mathrm{K}$


Evaluation: Poisoning Attacks

Poisoning Attack	Dataset	No D	efense	FLE	DGE
Foisoning Attack	Dataset	BA	MA	BA	MA
	Reddit	-	15.8	-	22.7
	MNIST	-	91.5	-	98.3
Untargeted	Fashion	-	41.1	-	90.0
	CIFAR-10	-	28.9	-	83.0
	Reddit	100	22.6	0.0	22.7
	MNIST	98.0	87.7	0.4	98.3
Constrain-and-Scale	Fashion	100.0	69.3	2.4	90.6
	CIFAR-10	100.0	66.1	0.0	83.8
	Reddit	100.0	22.6	0.0	22.7
	MNIST	82.6	77.2	0.1	98.3
DBA	Fashion	99.7	36.7	1.0	98.3
	CIFAR-10	85.2	67.4	2.1	83.8

Defenses	Red	ldit	MN	IST	Fash	ion	CIFA	R-10
Derenses	BA	MA	BA	MA	BA	MA	BA	MA
Benign Setting	0.0	22.7	0.5	98.3	3.7	90.9	0	83.9
No Defense	100.0	22.7	98.0	87.7	100.0	69.2	100.0	66.1
Krum	100.0	22.6	0.6	98.3	2.8	90.1	0.0	83.0
FoolsGold	0.0	22.7	0.5	98.3	3.0	90.7	0.0	83.6
Auror	100.0	22.5	0.5	98.3	2.5	90.9	0.0	83.9
AFA	100.0	22.6	83.1	94.2	97.9	87.3	100.0	66.5
DP	77.0	22.0	26.5	97.3	52.2	88.6	60.0	76.6
FLEDGE	0.0	22.7	0.4	98.3	2.4	90.6	0.0	83.8

Evaluation: Reward System

Limitations and Future Work

Limitations

- Storage Costs <u>Homomorphic Encryption</u>
- Computation Costs <u>Blockchain</u> and <u>Homomorphic Encryption</u>
- Reward System is connected to Defense's performance

Future Work

- In-depth analysis into scalability transaction fees, communication costs
- Performance analysis based on different blockchain platforms

Summary

C1: Leverage Blockchain to improve trust between computation parties

- Blockchain Two-Contract Computation BT2C
- **C2:** Combine Homomorphic Encryption and Blockchain to limit the ledger's transparency
 - Use of noise constant (δ). An attacker would need to break each delta to learn model's parameters
- •C3: Solve the dilemma of preventing the server from analyzing the local models against inference attacks while having to inspect the local models to detect poisoned models
 - BT2C Private Cosine Distance + Private Aggregation
- **C4:** Discriminate poisoned models to prompt disciplinary actions
 - G-KDE Poisoning Defense
- **•C5:** Credit clients over training rounds to make malicious clients accountable for their attacks
 - Reward System

Blockchain Two-Contract Computation – BT2C

Algorithm 1: BT2C – Private Cosine Distance
Input :δ [*] ⊲ encrypted offset
G [*] ⊲ encrypted global model
$W^* \triangleleft encrypted local model$
$_1 Z_D \leftarrow \text{PrivateDotProduct}(G^* + \delta^*, W^*)$
² $X_D \leftarrow \text{SecureDecryption}(Z_D) \triangleleft \text{defender function}$
$_{3} Z_{G} \leftarrow \text{PrivateMagnitudeSquared}(G^{*} + \delta^{*})$
$_{4}$ X _G ← SecureDecryption(Z _G)
$5 Z_L \leftarrow \text{PrivateMagnitudeSquared}(W^*)$
6 X_L ← SecureDecryption(Z_L)
$7 c \leftarrow 1 - \frac{\sum_{i=1}^{n} X_{D_i}}{\sqrt{\sum_{i=1}^{n} X_{G_i}} * \sqrt{\sum_{i=1}^{n} X_{L_i}}}$
8 UpdateScoreToLedger(c) < new TT3

Algorithm 2: BT2C – Secure Decryption
Input : $z_1, \ldots, z_m \triangleleft$ computation ciphers
Output :X ⊲ array of decrypted numbers
$\rho \triangleleft array$ of decrypted model chunks
¹ $\delta_1^*,, \delta_K^*$ ← ReadOffsetFromLedger() ⊲ from TT2
² $S_k \leftarrow \text{ReadKeyFromStorage}()$
3 <i>t</i> ← 0.05 \triangleleft array variation tolerance
4 for each cipher i in [1, m] do
$_{5} \rho_{i} \leftarrow \text{Decrypt}(z_{i}, S_{k})$
6 $v \leftarrow \frac{\max(\rho_i) - \min(\rho_i)}{\max(\rho_i)} \triangleleft \text{ compute variation}$
7 if $v \le t$ then
s $X_i \leftarrow \text{Average}(\rho_i)$
9 else if $K > 1$ then
10 for each offset j in [1, K] do
11 $\delta_j \leftarrow \text{Decrypt}(\delta_j^*, S_k)$
12 end
13 $\rho_i \leftarrow \frac{\rho_i - \sum_{j=1}^K \delta_j}{K} \triangleleft \text{ offset removal/injection}$
14 else
15 $R \leftarrow \text{ReadRewardFromLedger}() \triangleleft \text{from TT1}$
16 $s \leftarrow \text{CountSessionsFromLedger}() \triangleleft \# \text{TT1}$
17 $\phi \leftarrow \text{CountAnomaliesFromLedger}() \triangleleft \# \text{TT4}$
18 $R_C \leftarrow 0.1 * R * e^{-(\phi+1)/s} \triangleleft$ calculating reward
19 UpdateContractRewardToLedger(R_C) \triangleleft new TT4
20 $\rho_i \leftarrow \emptyset \triangleleft empty set$
21 end
22 end
return <i>X</i> or $p \triangleleft$ output type dependent on process

Algorithm 4: BT2C – Private AggregationInput: $W_1^*, \ldots, W_N^* \triangleleft$ selected models1 $Z \leftarrow W_1^* \triangleleft$ encrypted base model2for each update i in [2, N] do3 $| Z \leftarrow Add(Z, W_i^*)$ 4end5 $G_t \leftarrow$ SecureDecryption(Z) \triangleleft defender function6 $P_k \leftarrow$ ReadKeyFromLedger() \triangleleft from TT17 $G_t^* \leftarrow$ Encrypt(G_t, P_k)8UpdateGlobalToLedger(G_t^*, G_t) \triangleleft new TT7

G-KDE Poisoning Defense

Input: $(c_i,, c_K) \triangleleft \text{distance scores}$ 1 $f \leftarrow 2000 \triangleleft \text{resolution factor for smooth curves}$ 2 $(x_1,, x_f), (y_1,, y_f) \leftarrow \text{GaussianKDE}([c_i,, c_K], f) \triangleleft$ compute gaussian kernel density estimation 3 $(l_1,, l_N) \leftarrow \text{LocalMinimums}([y_1,, y_f]) \triangleleft l_n$ is the index of local minimum found in y 4 $G \leftarrow \{[x_1, x_{l_1}],, [x_{l_{N-1}}, x_{l_N}], [x_{l_N}, x_f]\} \triangleleft \text{group set}$ based on local minimums 5 $M \leftarrow N + 1 \triangleleft \text{maximum number of available groups}$ 6 for each group m in $[1, M]$ do 7 $ $ for each score i in $[1, K]$ do 8 $ $ $ $ if $c_i \in G_m$ then 9 $ $ $ $ $g_m \leftarrow i \triangleleft \text{append model index } i$ to a group 10 $ $ end 11 $ $ end 12 end
 2 (x₁,,x_f), (y₁,,y_f) ← GaussianKDE([c_i,,c_K], f) < compute gaussian kernel density estimation 3 (l₁,,l_N) ← LocalMinimums([y₁,,y_f]) < l_n is the index of local minimum found in y 4 G ← {[x₁,x_{l₁}],,[x_{l_{N-1},x_{l_N}], [x_{l_N},x_f]} < group set based on local minimums} 5 M ← N + 1 < maximum number of available groups 6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if c_i ∈ G_m then 9 g_m ← i < append model index i to a group 10 end
compute gaussian kernel density estimation 3 $(l_1,, l_N) \leftarrow \text{LocalMinimums}([y_1,, y_f]) \triangleleft l_n$ is the index of local minimum found in y 4 $G \leftarrow \{[x_1, x_{l_1}],, [x_{l_{N-1}}, x_{l_N}], [x_{l_N}, x_f]\} \triangleleft \text{group set}$ based on local minimums 5 $M \leftarrow N + 1 \triangleleft \text{maximum number of available groups}$ 6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if $c_i \in G_m$ then 9 $g_m \leftarrow i \triangleleft \text{append model index } i$ to a group 10 end 11 end
index of local minimum found in y 4 $G \leftarrow \{[x_1, x_{l_1}], \dots, [x_{l_{N-1}}, x_{l_N}], [x_{l_N}, x_f]\} \triangleleft \text{group set}$ based on local minimums 5 $M \leftarrow N + 1 \triangleleft \text{maximum number of available groups}$ 6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if $c_i \in G_m$ then 9 $g_m \leftarrow i \triangleleft \text{append model index } i \text{ to a group}$ 10 end 11 end
4 G ← { $[x_1, x_{l_1}],, [x_{l_{N-1}}, x_{l_N}], [x_{l_N}, x_f]$ } ⊲ group set based on local minimums 5 M ← N + 1 ⊲ maximum number of available groups 6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if $c_i \in G_m$ then 9 $g_m \leftarrow i \triangleleft$ append model index i to a group 10 end 11 end
based on local minimums 5 $M \leftarrow N + 1 \triangleleft$ maximum number of available groups 6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if $c_i \in G_m$ then 9 $g_m \leftarrow i \triangleleft$ append model index i to a group 10 end 11 end
5 $M \leftarrow N + 1 \triangleleft$ maximum number of available groups 6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if $c_i \in G_m$ then 9 $g_m \leftarrow i \triangleleft$ append model index i to a group 10 end 11 end
6 for each group m in [1, M] do 7 for each score i in [1, K] do 8 if $c_i \in G_m$ then 9 $g_m \leftarrow i \triangleleft$ append model index i to a group 10 end 11 end
7for each score i in [1, K] do8if $c_i \in G_m$ then9 $ g_m \leftarrow i \triangleleft$ append model index i to a group10end11end
11 end
an and
13 UpdateGroupsToLedger(g) \triangleleft new TT5. g_1 is closest to G_{t-1}
14 $R \leftarrow \text{ReadRewardFromLedger}() \triangleleft \text{from TT1}$
15 $T \leftarrow \text{ReadTotalNumberOfRoundsFromLedger}() \triangleleft \text{from TT1}$
16 $R_C \leftarrow \text{ReadContractRewardFromLedger}() \triangleleft \text{from TT4}$
17 $R_{\tau} \leftarrow \frac{R-R_C}{T*\operatorname{len}(g_1)} \triangleleft \operatorname{training reward}$
18 UpdateTrainingRewardToLedger(R_{τ}) < new TT6

