
FLEDGE:
Ledger-based Federated Learning Resilient
to Inference and Backdoor Attacks

J. CASTILLO 1, P. RIEGER 3, H. FEREIDOONI 3,
Q. CHEN 2, A. SADEGHI 3

1

+

jacastillo8/FLEDGE

1

2 3

https://github.com/jacastillo8/FLEDGE

Problem Statement
▪Machine Learning (ML) is very popular for different applications

◦ Problem: Data collection is difficult due to security and privacy concerns
◦ Solution: Federated Learning (FL)

▪FL aims to solve the privacy concerns by distributing the learning
process
◦ Clients train model with local private data – local model
◦ Aggregation server compiles a new model using all local models – global

model

▪Privacy Problem in FL
◦ You must trust the aggregation server
◦ Consequences: Adversary can analyze local models to retrieve private data

from clients

▪Security Problem in FL
◦ You must trust the learning process
◦ Consequences: Adversary can poison data and/or model to skew the

learning process

2

Generic Image from Wikipedia

https://en.wikipedia.org/wiki/File:Centralized_federated_learning_protocol.png

Adversary Model
▪Privacy Threat

◦ White-box Inference Attack – honest-but-curious

◦ Goal: Adversary extracts sensitive information from every local model before aggregation

◦ Capabilities: Full control of aggregation server

▪Security Threat
◦ Targeted Poisoning Attack – backdoors

◦ Goal: Adversary manipulates loss function to train models to behave normally all the time except when a
specific set of conditions, e.g., trigger, is present in the input

◦ Capabilities: Control of 𝑓clients out of 𝑛 total clients such that 𝑓 =
𝑛

2

3

Existing Solutions
▪Privacy-preserving Defenses

◦ Secure Multi-Party Computation (SMPC) based Solutions

◦ Multi-party Homomorphic Encryption Solution

▪Poisoning Defenses
◦ Untargeted Poisoning Solutions

◦ Backdoor Solutions

▪Hybrid Defenses
◦ SMPC + Poisoning Solutions

◦ TEE + Poisoning Solutions

▪Research Gap – Lack of accountability
◦ Malicious aggregation service

◦ Malicious training clients

4

Requirements
▪P1: Utility Retention

◦ Defense must preserve model utility

▪P2: Computation Availability
◦ Private model analysis and aggregation shall not fail due to limited resource availability

▪S1: Effective Poisoning Mitigation
◦ Defense must detect poisoning attempts

◦ Defense must mitigate their impact on the global model

◦ Defense must preserve model utility

▪S2: Autonomous Behavior
◦ Defense must be flexible to automatically adjust to different adversarial strategies

5

Challenges
▪C1: Leverage Blockchain to improve trust between computation parties

▪C2: Combine Homomorphic Encryption and Blockchain to limit the ledger’s transparency

▪C3: Solve the dilemma of preventing the server from analyzing the local models against inference
attacks while having to inspect the local models to detect poisoned models

▪C4: Discriminate poisoned models to prompt disciplinary actions

▪C5: Credit clients over training rounds to make malicious clients accountable for their attacks

6

Proposed Solution: FLEDGE
▪Contributions

1. Strong privacy guarantees via Blockchain Two-Contract
Computation (BT2C)

◦ BT2C – Semi-honest relationship between 2 smart contracts
using CKKS

◦ Resilient against white-box inference attacks

2. Mitigation of poisoning attacks via G-KDE clustering

◦ Evaluated on 4 datasets: MNIST, Fashion-MNIST, CIFAR10 and
Reddit

3. Compensation algorithm via cryptocurrency

◦ Offer incentives to benign aggregation services and benign
training clients

Transaction
Name

Transaction
Type

Init TT1

Storage TT2

Analysis TT3

Privacy TT4

Security TT5

Appraisal TT6

Global TT7

7

Assumptions
▪A1: Consensus Protocol is NOT compromised

◦ Blockchain is the platform of our solution

◦ We rely on default consensus protocol – Raft

▪A2: Non-colluding Servers
◦ Servers engage in semi-honest relationship to enable privacy

◦ Adversary cannot control both servers simultaneously

▪A3: Clients Perform Encryption – CKKS
◦ Clients are summed to have sufficient computational resources to perform encryption

8

Workflow
▪Step 0 : Initialization

◦ Interested party (owner) proposes learning task of 𝑇 training
rounds with reward 𝑅 for the training session

◦ Owner submits global model parameters (TT7) to be trained

◦ Owner submits TT1 to start training session

▪Step 1: Model Encryption
◦ Client 𝑖 trains model 𝑊𝑖 using private (local) data

◦ Client 𝑖 injects noise 𝛿𝑖 to offset 𝑊𝑖 s.t. 𝑊′𝑖 = 𝑊𝑖 + 𝛿𝑖
◦ Client 𝑖 encrypts 𝑊′𝑖 and 𝛿𝑖 (𝑊𝑖

∗ and 𝛿𝑖
∗, respectively) and

submits them to GWC

▪Step 2: Model Process
◦ GWC stores 𝑊𝑖

∗ into storage oracle A and generates model ID

◦ GWC uses model ID, client ID and 𝛿𝑖
∗ to submit TT2

▪Step 3: Model Analysis
◦ GWC uses 𝛿𝑖

∗ to offset 𝐺𝑡−1
∗ s.t. 𝐺𝑡−1

∗ = 𝐺𝑡−1
∗ + 𝛿𝑖

∗

◦ GWC computes cosine distance 𝑐𝑖 between 𝑊𝑖
∗ and 𝐺𝑡−1

∗ using DC
as computation party – BT2C: Private Cosine Distance (Alg. 1)

◦ GWC uses 𝑐𝑖 and model ID to submit TT3

▪Step A: Model Privacy – BT2C: Secure Decryption (Alg. 2)
◦ DC checks if GWC is attempting to misbehave – TT4

◦ DC adjusts reward for GWC to remove malicious intent

▪Step 4: Model Security
◦ DC applies Poisoning Defense (Alg. 3) to remove malicious models

◦ DC adjusts rewards for training clients to remove malicious intent

◦ DC uses model IDs and rewards to submit TT5 and TT6, respectively

▪Step 5: Model Aggregate
◦ GWC use filtered models to compute new global model 𝐺𝑡 and
𝐺𝑡
∗ – BT2C: Private Aggregation (Alg. 4)

◦ GWC uses new models to submit TT7

9

Evaluation: Inference Attacks

10

Evaluation: Poisoning Attacks

11

Evaluation: Reward System

12

𝑅𝐶 = 0.1 ∗ 𝑅 ∗ 𝑒−(𝜙+1)/𝑠

φ = # of anomalies = # of TT4
s = # of sessions = # of TT1

𝑅𝑇 =
𝑅 − 𝑅𝐶

𝑇 ∗ 𝑙𝑒𝑛(𝑔𝑏)

𝑔𝑏 = benign group of models

Limitations and Future Work
▪Limitations

◦ Storage Costs – Homomorphic Encryption

◦ Computation Costs – Blockchain and Homomorphic Encryption

◦ Reward System is connected to Defense’s performance

▪Future Work
◦ In-depth analysis into scalability – transaction fees, communication costs

◦ Performance analysis based on different blockchain platforms

13

Summary
▪C1: Leverage Blockchain to improve trust between computation parties

◦ Blockchain Two-Contract Computation – BT2C

▪C2: Combine Homomorphic Encryption and Blockchain to limit the ledger’s transparency
◦ Use of noise constant (𝛿). An attacker would need to break each delta to learn model’s parameters

▪C3: Solve the dilemma of preventing the server from analyzing the local models against inference
attacks while having to inspect the local models to detect poisoned models
◦ BT2C – Private Cosine Distance + Private Aggregation

▪C4: Discriminate poisoned models to prompt disciplinary actions
◦ G-KDE Poisoning Defense

▪C5: Credit clients over training rounds to make malicious clients accountable for their attacks
◦ Reward System

14

Blockchain Two-Contract
Computation – BT2C

15

G-KDE Poisoning Defense

16

	Slide 1: FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks
	Slide 2: Problem Statement
	Slide 3: Adversary Model
	Slide 4: Existing Solutions
	Slide 5: Requirements
	Slide 6: Challenges
	Slide 7: Proposed Solution: FLEDGE
	Slide 8: Assumptions
	Slide 9: Workflow
	Slide 10: Evaluation: Inference Attacks
	Slide 11: Evaluation: Poisoning Attacks
	Slide 12: Evaluation: Reward System
	Slide 13: Limitations and Future Work
	Slide 14: Summary
	Slide 15: Blockchain Two-Contract Computation – BT2C
	Slide 16: G-KDE Poisoning Defense

