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Motivation: Unintentional Information Leakage
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Threat Model: Assumptions

- Available resources (public) are allowed to be less than the number of requests.
- The request sender is aware of whether their requests are being fulfilled.

- A Resource Allocator (RA) is able to work fairly without seeing user identity.
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Possible Solutions (AKR): Private Resource Allocators and
Their Applications

1. Slot-based resource allocator
2. Randomized resource allocator

3. Differentially private resource allocator (DPRA)

[AKR20] Sebastian Angel, Sampath Kannan, and Zachary Ratliff. Private resource allocators and their applications. IEEE S&P (Oakland), 2020.
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Possible Solution(AKR): Private Resource Allocators and
Their Applications

Differentially private resource allocator (DPRA)

[AKR20] Sebastian Angel, Sampath Kannan, and Zachary Ratliff. Private resource allocators and their applications. IEEE S&P (Oakland), 2020.
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AKR: Differentially Private Resource Allocator
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Laplace Mechanism Sensitivity: Maximum change

in output caused by the input

- dataset \
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** Number of dummies should be a
Laplace noise introduces &

AKR: Laplace MeChaﬂism[positive integer. Rounding up the
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AKR: Laplace Mechanism
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AKR: Differentially Private Resource Allocator




Outline

e Our solution by precise modeling



AKR: Differentially Private Resource Allocator
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Ours: Differentially Private Resource Allocator
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Ours: Differentially Private Resource Allocator
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Privacy Amplification

The attacker has only a limited view of the resource allocator
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Privacy Modeling
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Precise Modeling

Kearns M, Pai M, Roth A, Ullman J. Mechanism design in large games: Incentives and privacy. In Proceedings of the 5th conference on Innovations in theoretical 28
computer science 2014



Our Mechanisms

e Constant Mechanism (CST)
e Uniform Mechanism (UNI)

e Geometric Mechanism (GEO)

e Double Geometric Mechanism (DGEO)
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Findings

- Precise modeling of resource allocation yields better utility-privacy tradeoff
- Constant noise can already satisfy DP when noise is greater than k

- In general, GEO has the best performance

| Privacy | Noise | Noise Sign | DP Condition | 6tility (e=0.65) | Utility (e=1.7) | Utility (e=2.3) )

LCST ¢-ADP Constant + Noise ¢ > k 0.50 - - ]
LINI e-ADP Discrete nniform /= Right bound 7. > k 046 065 070

LGEO ¢-ADP__| One-sided geometric 4 /= - 047 0.82 0.90 J
DGEO e-ADP Double geometric +/— - 0.44 0.77 0.98

AKR [Z] | (e 8)-DP Laplace + Bias p =1 —In (26)/e \_ 032 0.53 0.59 Y,

A summary of different mechanisms and their utility under some representative € values.
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Evaluation

Setup

- Following AKR’s setting, we set resource capacity k = 10 for most of
our simulations

- Metrics
- Privacy (€) is measured by the DP guarantee

- Utility: percentage of resources allocated to legitimate requests

- Each simulation consists of millions of rounds



Evaluation

L0 peEd)
—— GEO

0.8| —— UNI
—— CST

206 AKR
=

0.5 1.0 15 2.0 2.9

Utility of of constant
mechanism cannot exceed 50%

DGEO, GEO lead in privacy-
utility trade-off, especially when
€ is large

Precise privacy modeling
improves the privacy-utility
trade-off

33



Conclusion

1. We conduct a rigorous privacy analysis of differentially private resource
allocators.

o Tighter privacy bounds
o The attacker’s view
o  Four noisy mechanisms
2. We theoretically and empirically evaluate our proposed mechanisms.

o Our mechanism GEO leads to the best privacy-utility tradeoff and outperforms AKR
by a large margin

o Constant noise can already satisfy DP when noise is greater than k, though the
utility cannot exceed 50%

3. Our code is available at https://github.com/dpra-dp/dpra
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https://github.com/dpra-dp/dpra
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