

Differentially Private Resource Allocation

Joann Qiongna Chen¹, Tianhao Wang², Zhikun Zhang^{3,5}, Yang Zhang³, Somesh Jha⁴, Zhou Li¹

¹UC Irvine ²University of Virginia ³CISPA ⁴UW-Madison. ⁵Stanford University

Motivation: Unintentional Information Leakage

Storage controllers

Network rate limiters

Messengers

Outline

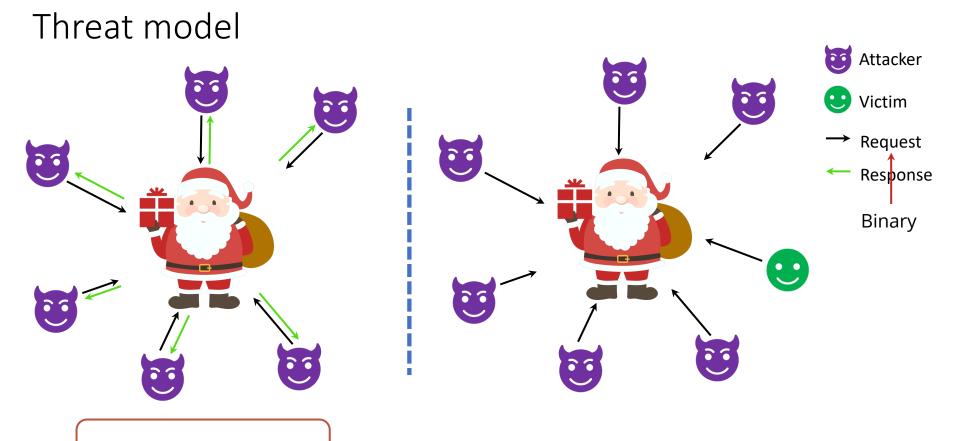
- Threat model
- Possible solutions: AKR
- Our solution by precise modeling
- Evaluation

Outline

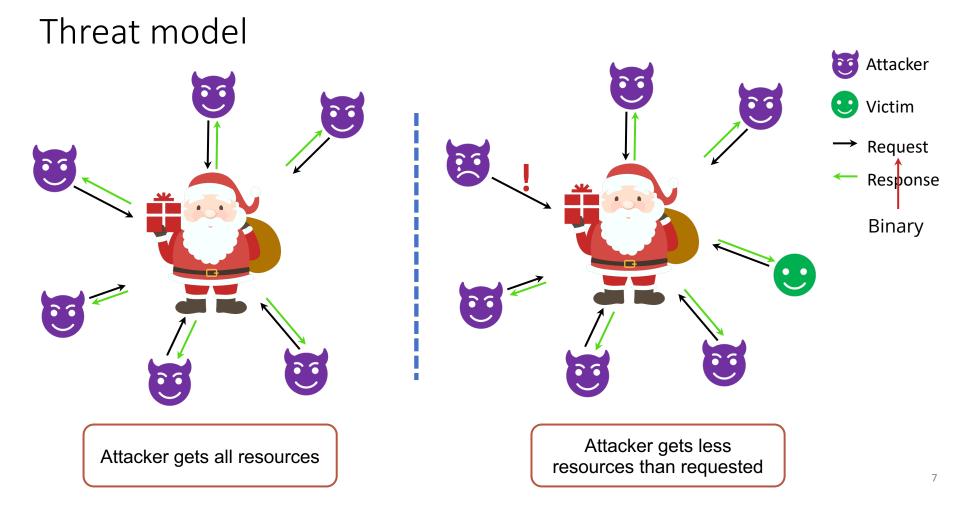
- Threat model
- Possible solutions: AKR
- Our solution by precise modeling
- Evaluation

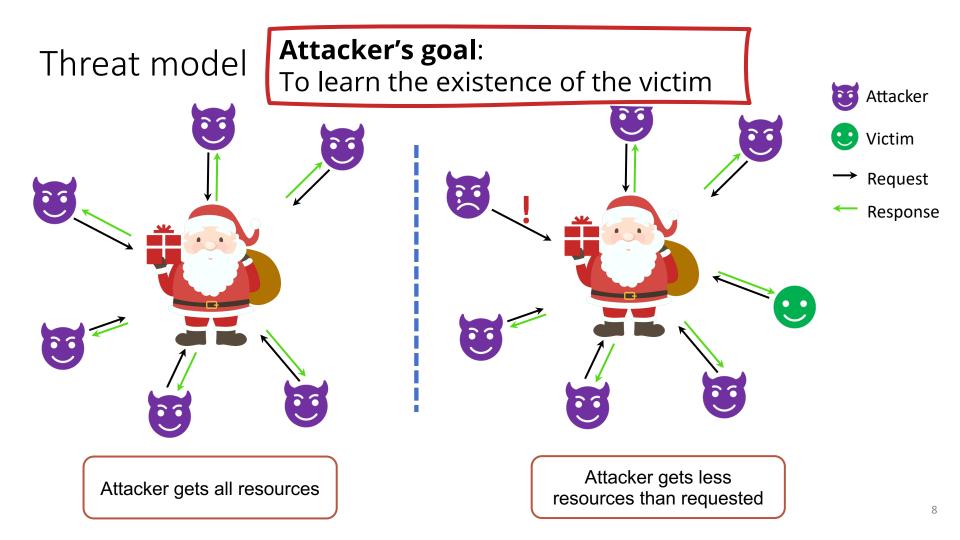
Threat Model: Assumptions

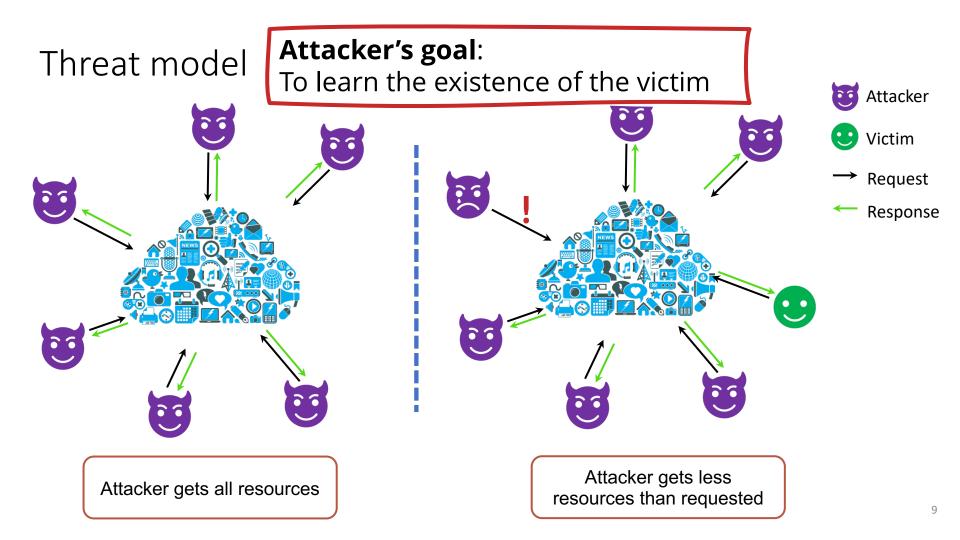
- Available resources (public) are allowed to be less than the number of requests.
- The request sender is aware of whether their requests are being fulfilled.
- A Resource Allocator (RA) is able to work fairly without seeing user identity.

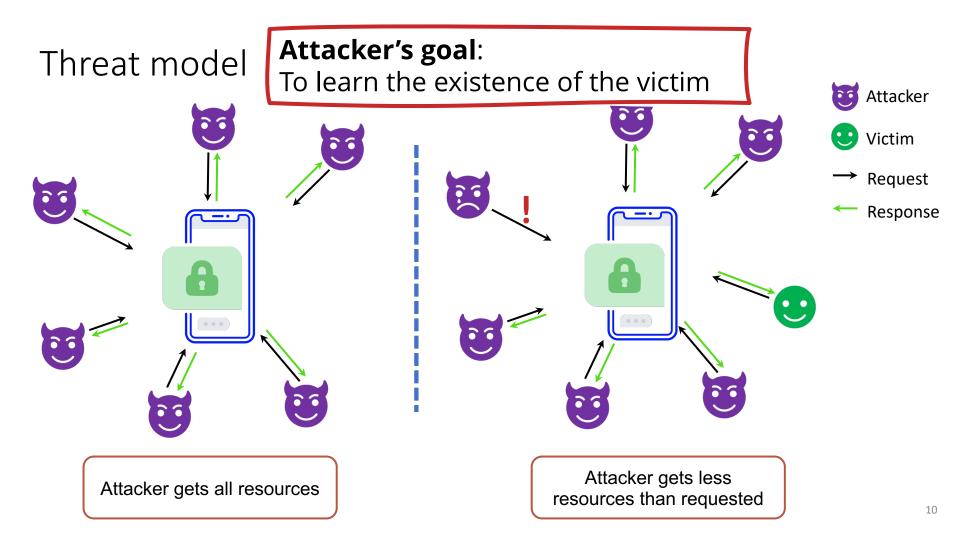


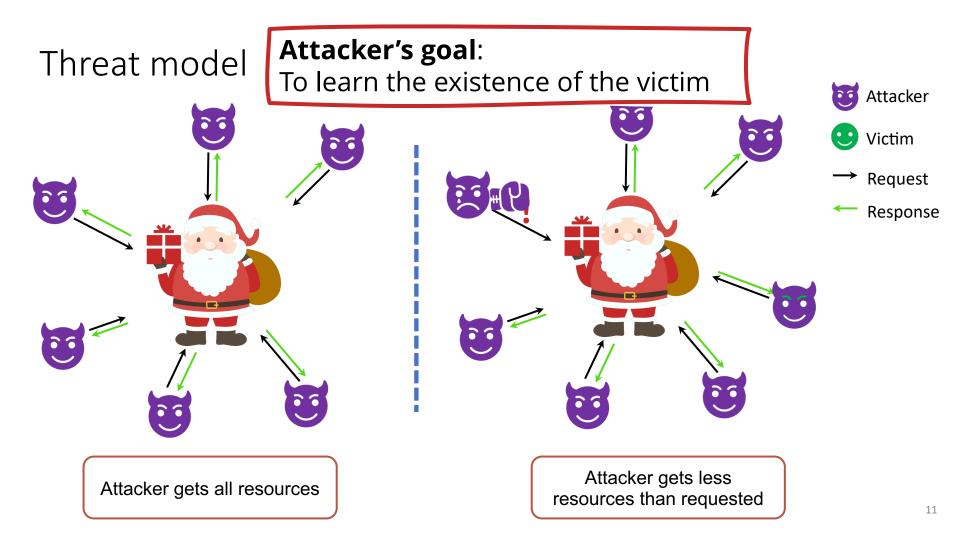
Attacker gets all resources

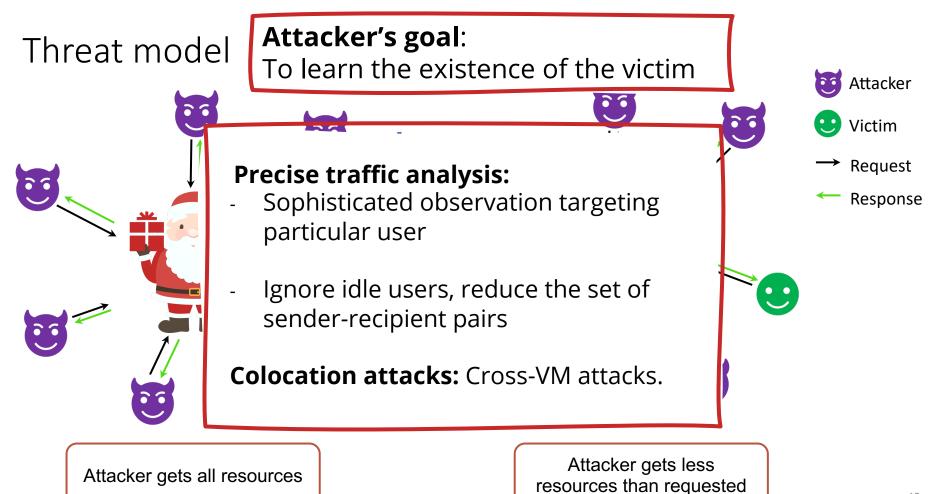












Overview

- Threat model
- Possible solutions: AKR
- Our solution by precise modeling
- Simulation Results

Possible Solutions (AKR): Private Resource Allocators and Their Applications

- 1. Slot-based resource allocator
- 2. Randomized resource allocator
- 3. Differentially private resource allocator (DPRA)

[AKR20] Sebastian Angel, Sampath Kannan, and Zachary Ratliff. Private resource allocators and their applications. IEEE S&P (Oakland), 2020.

Possible Solution(AKR): Private Resource Allocators and Their Applications

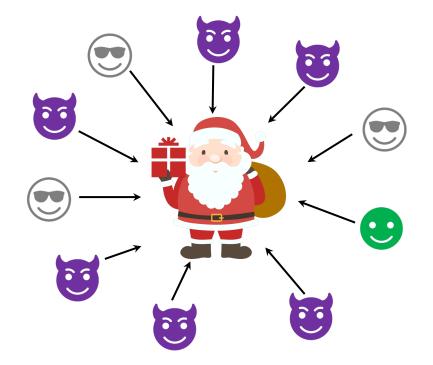
1. Slot-based resource allocator

2. Randomized resource allocator

📩 Differentially private resource allocator (DPRA)

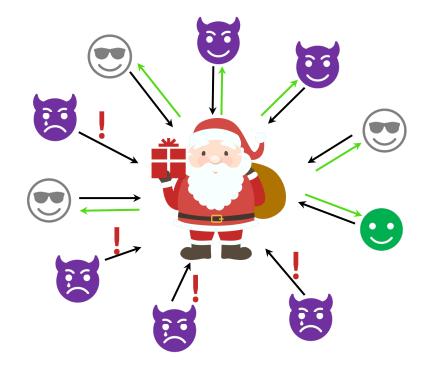
[AKR20] Sebastian Angel, Sampath Kannan, and Zachary Ratliff. Private resource allocators and their applications. IEEE S&P (Oakland), 2020.

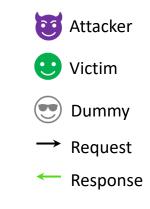
AKR: Differentially Private Resource Allocator



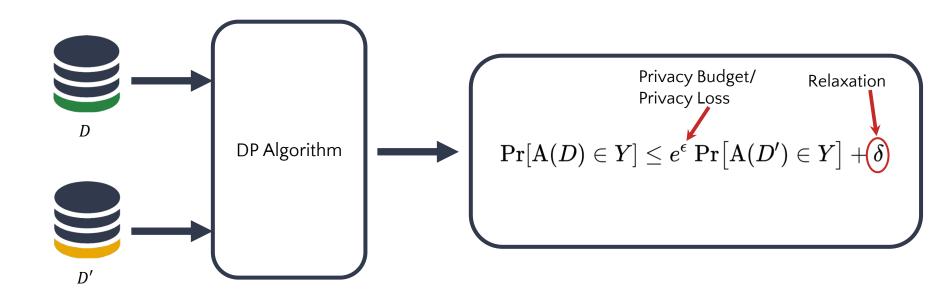


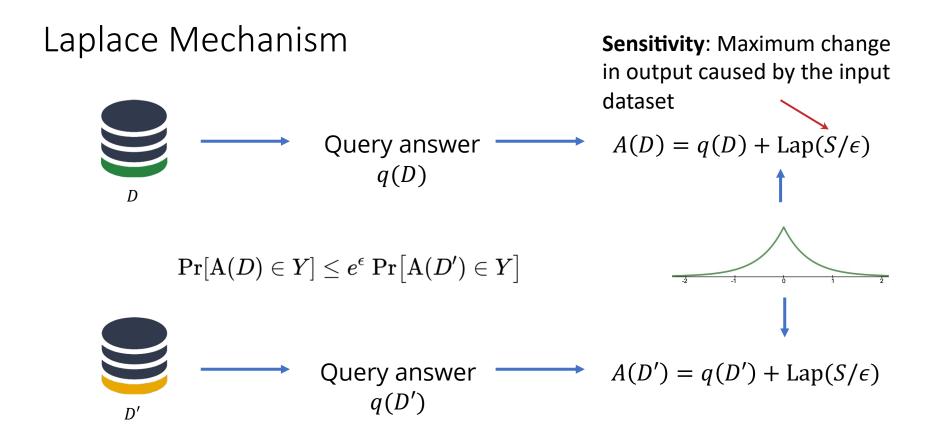
AKR: Differentially Private Resource Allocator

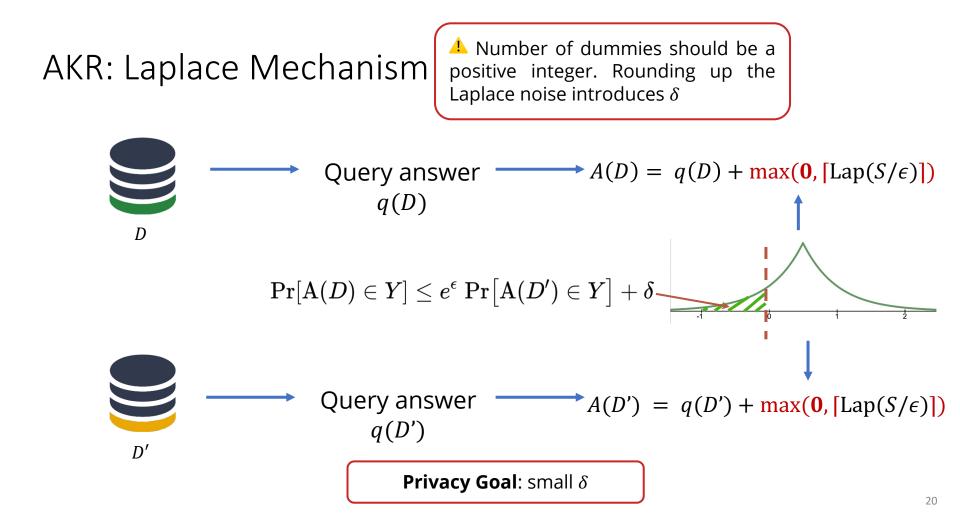




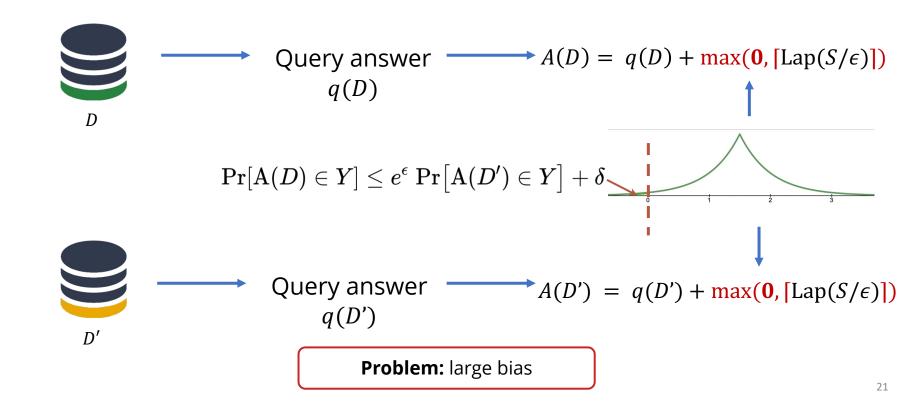
 (ϵ, δ) -Differential Privacy



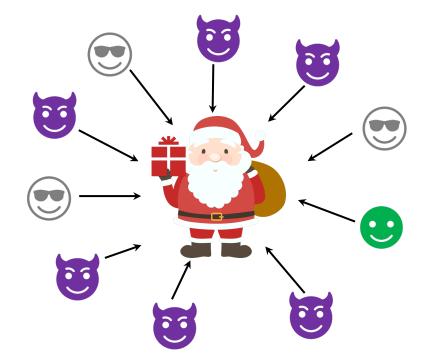




AKR: Laplace Mechanism



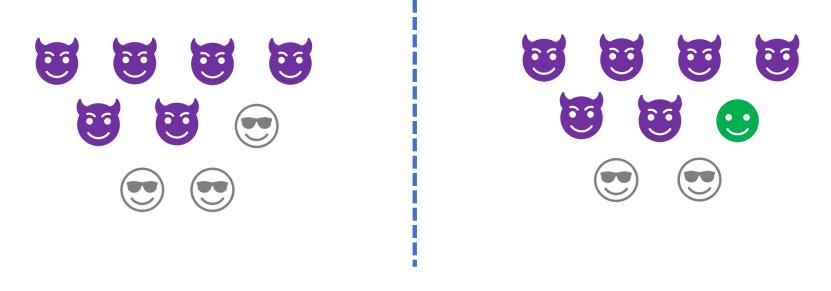
AKR: Differentially Private Resource Allocator



Outline

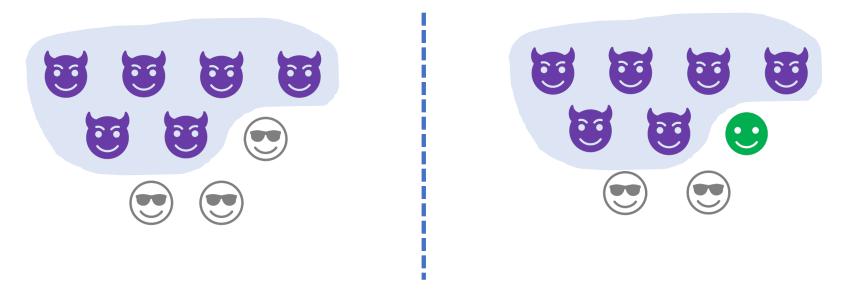
- General threat model
- Possible solutions: AKR
- Our solution by precise modeling
- Simulation Results

AKR: Differentially Private Resource Allocator



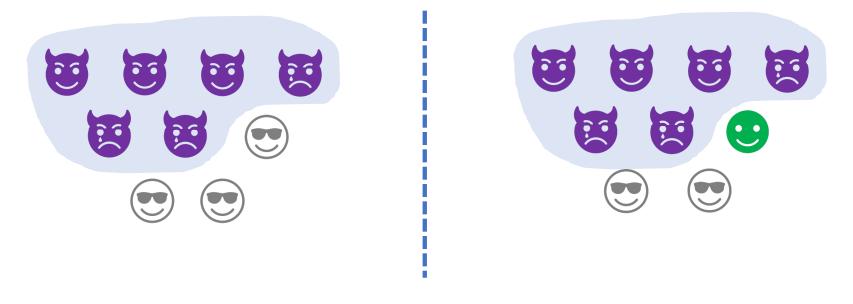
 $\Pr[\operatorname{A}(D) \in Y] \leq e^{\epsilon} \Prig[\operatorname{A}(D') \in Yig] + \delta$

Ours: Differentially Private Resource Allocator



 $\Pr[\operatorname{A}(D) \in Y] \leq e^\epsilon \Pr[\operatorname{A}(D') \in Y]$

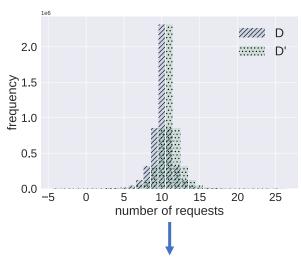
Ours: Differentially Private Resource Allocator



 $\Pr[\operatorname{A}(D) \in Y] \leq e^\epsilon \Pr[\operatorname{A}(D') \in Y]$

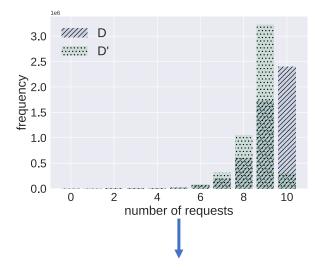
Privacy Amplification

The attacker has only a limited view of the resource allocator



Overall View

Attacker's View



Number of total requests during a round of allocation

Number of attacker's fulfilled requests

Privacy Modeling

Traditional DP
$$\frac{\Pr[A(D) = y]}{\Pr[A(D') = y]} = \frac{\Pr[q(D) + Lap\left(\frac{S}{\epsilon}\right)]}{\Pr[q(D') + Lap\left(\frac{S}{\epsilon}\right)]} \le e^{\epsilon}$$
Conditional probability of output y
PMF of noise distribution
PMF of noise distribution
PMF of noise distribution
$$\frac{\Pr[\operatorname{View}_{\mathcal{M}}^{\mathcal{A}}(D) = y]}{\Pr[\operatorname{View}_{\mathcal{M}}^{\mathcal{A}}(D) = y]} = \frac{\sum_{i=x_l}^{x_r} \Pr[d = i] \Pr[y||D| + d]}{\sum_{i=x_l}^{x_r} \Pr[d = i] \Pr[y||D'| + d]} \le e^{\epsilon}$$

Kearns M, Pai M, Roth A, Ullman J. Mechanism design in large games: Incentives and privacy. In Proceedings of the 5th conference on Innovations in theoretical computer science 2014

Our Mechanisms

- Constant Mechanism (CST)
- Uniform Mechanism (UNI)
- Geometric Mechanism (GEO)
- Double Geometric Mechanism (DGEO)

$$\frac{\Pr[\operatorname{View}_{\mathcal{M}}^{\mathcal{A}}(D) = y]}{\Pr[\operatorname{View}_{\mathcal{M}}^{\mathcal{A}}(D) = y]} = \frac{\sum_{i=x_l}^{x_r} \Pr[d = i] \Pr[y||D| + d]}{\sum_{i=x_l}^{x_r} \Pr[d = i] \Pr[y||D'| + d]}$$

- Precise modeling of resource allocation yields better utility-privacy tradeoff
- Constant noise can already satisfy DP when noise is greater than k
- In general, GEO has the best performance

	Privacy	Noise	Noise Sign	DP Condition	Utility (ϵ =0.65)	Utility (ϵ =1.7)	Utility (ϵ =2.3)
CST	ϵ -ADP	Constant	+	Noise $c \ge k$	0.50	-	-
UNI	€-ADP	Discrete uniform	+/-	Right bound $x_r > k$	0.46	0.65	0.70
GEO	ϵ -ADP	One-sided geometric	+/-	-	0.47	0.82	0.90
DGEO	ϵ -ADP	Double geometric	+/-		0.44	0.77	0.98
AKR [(ϵ, δ) -DP	Laplace	+	Bias $\mu = 1 - \ln{(2\delta)}/\epsilon$	0.32	0.53	0.59

A summary of different mechanisms and their utility under some representative ϵ values.

Outline

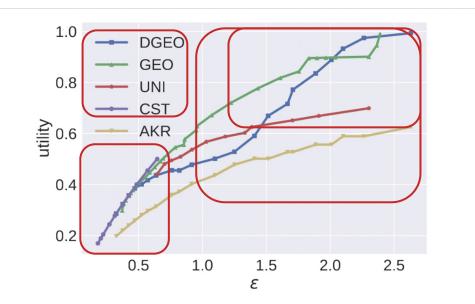
- Threat model
- Possible solutions: AKR
- Our solution by precise modeling
- Evaluation

Evaluation

Setup

- Following AKR's setting, we set resource capacity k = 10 for most of our simulations
- Metrics
 - Privacy (ϵ) is measured by the DP guarantee
 - Utility: percentage of resources allocated to legitimate requests
- Each simulation consists of millions of rounds

Evaluation



Utility of of constant mechanism cannot exceed 50%

-

- DGEO, GEO lead in privacyutility trade-off, especially when ϵ is large
- Precise privacy modeling improves the privacy-utility trade-off

Conclusion

- 1. We conduct a rigorous privacy analysis of differentially private resource allocators.
 - Tighter privacy bounds
 - The attacker's view
 - Four noisy mechanisms
- 2. We theoretically and empirically evaluate our proposed mechanisms.
 - Our mechanism GEO leads to the best privacy-utility tradeoff and outperforms AKR by a large margin
 - Constant noise can already satisfy DP when noise is greater than *k*, though the utility cannot exceed 50%
- 3. Our code is available at https://github.com/dpra-dp/dpra

Question

Joann Qiongna Chen (**on the academic job market**)

Tianhao Wang

Zhikun Zhang

Yang Zhang

Somesh Jha

Zhou Li