Prioritizing Remediation of Enterprise Hosts by Malware Execution Risk

Andrew Chi (Cisco), Blake Anderson (Cisco), Michael K. Reiter (Duke University)

Network Defense: Prioritization is Key

- Each day, a security team must decide:
 - Which compromised hosts to remediate?
 - What vulnerable software to **patch**?
 - Which network connections to **monitor**?
- Resource constraints: computational, human

Our focus

Patching vs. Remediation

Agency (and Time)

	Defender-Driven (relatively static)	Attacker-Driven (dynamic)
Global	 Universal characteristics Vulnerabilities intrinsic to each particular application + version Exploitability (attack vector,) Effect on Confidentiality (C), Integrity (I), or Availability (A) Global patching studies Metrics: CVSS Base 	 Public or aggregate attacker activity Threat feeds for state of attacker tools and actual attacker activity: Exploit code/kit available Actual exploitation in the wild DNS and IP blacklists Reported attack campaigns Metrics: CVSS Temporal
Local	 Enterprise-specific environment Device & software inventory Host & boundary defenses Security configuration Requirements on (C), (I), (A) Metrics: CVSS Environmental 	 Enterprise-specific attacker activity Scanning and reconnaissance Malware encounters Compromised hosts Convicted network connections Priority metrics: local, dynamic

Goal: Minimize Regret

- Regret is measured by:
 - Failure to remediate (reimage) a host that continues or worsens its malware execution
 - Unjustified business disruption (false alarm)
- Prediction target
 - Hosts that will execute malware (not just encounter it)
 - Actionable time frame: 7 days

NOTE: not all hosts with malware detections require human intervention.

Datasets

Multi-enterprise (2018-2019)

- Millions of hosts
- Thousands of enterprises
- Anonymized
- No interaction with incident response teams
- Endpoint data source:
 - File-based malware detections

Single-enterprise (2022-2023)

- 41,000 hosts
- 1 enterprise (multi-national)
- Worked closely with incident response team
- Endpoint data sources:
 - File-based malware detections
 - Network flows + process ID

Endpoint Data Sources (Agent-based)

- Advanced Malware Protection (AMP)
- File-based malware detections: (malicious events only)

- Network Visibility Module (NVM)
- Netflow[5-tuple]+domain+process (all traffic, but no labels)

ML Goal: Predict Compromise Next Week

Multi-Enterprise: Typical Classifier Performance

Results: Multi-Enterprise (2018-2019)

Feature (Event Type)	Importance
Executed Malware	0.2649
Threat Detected in Exclusion	0.0805
File Detection	0.0662
Policy Update	0.0638
Computer Metadata Changed	0.0543
Failed to Delete from Quarantine	0.0529
Attempting Quarantine Delete	0.0524
Low Prevalence Execution	0.0352
Threat Quarantined	0.0323
Generic IOC	0.0301

- High precision, moderate recall
- BUT: limited practical use
- Requires too much data
- Data mismatch (sampling bias)
 - Train: multi-enterprise
 - Deploy: single-enterprise

Single-Enterprise Study (2022-2023)

- Malware is a moving target
 - More sandbox-based detections
 - Adapt to represent "typical" case
- AMP feat.: malware names
- NVM feat.: new singletons (prevalence=1 activity)
- NVM feat.: new public suffixes (.com, .co.uk, .k12.nc.us)
- NVM only partially available

rare \neq malicious

NVM singleton types

- Process hash: cled4c18...
- Process name: rare.exe
- Dest. domain: rare.net
- **Dest. IP subnet:** 3.1.4.0/24

Single-Enterprise: Prediction of Malware Execution (1 week ahead)

6-month AMP+NVM (22k hosts)

12-month AMP (41k hosts) PR: AvgPrecision = 0.68

Feature Importances

6-month AMP (22k hosts)

Feature (Past/Current Detection)	Import.
current_det_JS:Adware.Popunder.G	0.059
current_evt_Threat Detected	0.051
past_compromise	0.035
past_det_JS:Adware.Popunder.G	0.034
current_compromise	0.033
current_evt_Executed Malware	0.031
current_det_JS:Adware.Popunder.D	0.030
past_evt_Threat Detected	0.023
past_Retrospective Detection	0.022
past_evt_Executed Malware	0.020
past_det_JS:Adware.Lnkr.L	0.013
current_det_JS:Adware.Lnkr.L	0.012
past_det_JS:Adware.Popunder.D	0.011
current_Retrospective Detection	0.010
current_det_W32.File.MalParent	0.008

6-month AMP+NVM (22k hosts)

Feature (Past/Current Detection)	Import.
current_det_JS:Adware.Popunder.G	0.049
past_compromise	0.045
current_evt_Threat Detected	0.045
current_compromise	0.039
new_public_suffixes_count	0.036
past_det_JS:Adware.Popunder.G	0.031
current_evt_Executed Malware	0.030
new_singleton_subnets_count	0.028
new_singleton_domains_count	0.028
current_det_JS:Adware.Popunder.D	0.024
past_Retrospective Detection	0.024
past_evt_Threat Detected	0.023
past_evt_Executed Malware	0.016
new_singleton_hashes_count	0.013
past_det_JS:Adware.Popunder.D	0.013

12-month AMP (41k hosts)

Feature (Past/Current Detection)	Import.
past_evt_Executed Malware	0.058
past_compromise	0.051
current_evt_Executed Malware	0.038
current_evt_Threat Detected	0.030
current_compromise	0.029
past_evt_Threat Detected	0.022
past_det_JS:Adware.Popunder.G	0.016
past_det_W32.DFC.MalParent	0.015
current_det_JS:Adware.Popunder.G	0.013
current_det_Auto.7DF7E9D.Adware	0.011
current_det_W32.DFC.MalParent	0.011
current_det_JS:Adware.Popunder.D	0.010
past_Retrospective Detection	0.009
past_det_JS:Adware.Popunder.D	0.008
past_det_PUA.Win.Dropper.Generic	0.008

Singletons: Benign and Malicious

Benign: normal web browsing

- Author's laptop
- Visited a singleton:
 - farmsidekitchen.com
 - Local salad restaurant
- Singleton (prevalence = 1)
 - No other machines visited the domain that day.
- Web browsing singleton domains are very common
- Conclusion: No security concern

Malicious: Sality malware

- duo device health.exe
- Visited many singletons:
 - suewyllie[.]com
 - 724hizmetgrup[.]com
 - pelcpawel.fm.interia[.]pl
 - > 100 IPs in singleton /24 prefixes
- Program hash legitimate, but...
- Many other A/V and network alerts
- Conclusion: Sality process injection
- Action: Reimage machine

Classifier Degradation if No Retraining

Conclusions and Future Work

- Single-enterprise malware prediction is possible
 - Not necessarily inferior to multi-enterprise training
 - Local idiosyncrasies
 - Local environment more stable
 - Richer features, combined data sources
- Feature importance: basic explanations
- Future: ongoing collaboration with Cisco CSIRT
 - Threat hunting based on classifier results
 - Gap analysis of current plays vs automated classifier

ılıılı cısco

Acknowledgments

- Cisco CSIRT
 - Brandon Enright
 - Adam Weller
 - Joey Rosen
 - Igor Dobrogorskiy
 - Derek Schmell

- Cisco Secure Firewall
 - Blake Anderson
 - David McGrew

Backup slides

Vulnerabilities → Compromise?

• CVE-2013-3829

 Malware execution rate not significantly different between vulnerable hosts and baseline.

• CVE-2015-1641

- Malware execution rate is significantly higher than baseline.
- Consistent with Symantec SecurityFocus, which indicates that CVE-2015-1641 has been exploited in the wild.

CVE-2014-6360

- The malware execution rate is significantly higher than baseline.
- SecurityFocus is not aware of any active exploits of CVE-2014-6360, but AMP data shows above-baseline activity for hosts running a version of MS Excel affected by this vulnerability.
- While correlation is not causation, this may be worth investigating.

CVE-2014-6360 (exploit status unknown), vuln_hosts \approx 4633/day Microsoft Excel CVE-2014-6360 Memory Corruption Vulnerability

