

Enhanced In-air Signature Verification via Hand Skeleton Tracking to Defeat Robot-level Replays

Zeyu Deng, Long Huang, Chen Wang

Department of Computer Science

Louisiana State University

Email: zdeng6@lsu.edu, lhuan45@lsu.edu, chenwang1@lsu.edu

Current Authentication Methods

C Knowledge-based secret

- PIN/password
- Patterns

Static Authentication Input:

Physiologic

- Fingerprint
- Iris

- Can be lost, stolen, forgotten
- Can be spoofed and replicated

Emerging Behavioral Biometric Authentication

□ Verifying dynamic motion characteristics

- Gait patheme
 Hard to be copied or reproduced
- Keystrol Less dependent on dedicated hardware

In-air 3D signature is one representative of behavioral biometrics

In-air 3D signature

- Representative behavioral biometric authentication
- Inherits the traditional signature's legal effect
- Enhanced security
 - 3D handwriting curves
 - Signing behaviors
- Eliminates the need for a writing surface
- Supported by existing hand-tracking interfaces

Current hand-tracking interfaces

Have not considered threats of **3D printing and motion-copy robots**

Vulnerabilities of Hand Tracking Interfaces

College of Engineering

& Computer Science

School of Electrical Engineering

Χ

0

Х

LSU

Defense Against Robot Replays

Current robots are still not able to copy hand-joint-level motions

Novel hand joint-level authentication

- Extend the dimension of in-air signatures from a single point to multiple hand joints
- Leverage the hand's kinematic structure motions to prevent robot replays

3D Hand Skeleton Signature System

Hand Skeleton Motion Data Extraction

□ 3D landmarks of a hand captured by visual sensor

Examine 3D in-air signatures based on a novel graphical representation

Multi-joint Data Normalization and Alignment

Camera placement

- Predefined direction alignment
- Hand size normalization

□ Inconsistent signature curve

• Trajectory normalization

□ Varying signing speed

• Trajectory interpolation

Joint-level Motion Features Presentation

□ Hand skeleton signature

- Signature trajectory
- Signing behavior
- Hand geometry
- □ Integrate time information
- Examine from 3 different perspectives

Three View-based Biometric Feature Presentation

Presenting spatial information

Three-view projection

Presenting temporal Information

Gradient color from light to dark

□ Joint significance weight assignment

Front

Side

50

100

Erame Erame

200

250

300

1

Inter-joint Motion Feature Derivation

Relative distance relationships between hand joints

- Distinguish users
- Indicate human or robot replay

80

40

20

Inter-joint motion profile: variance over time

140

10

(c) User 1 replayed by a robot & 3D-printed hand.

	Joint	Avg. Score	Joint	Avg. Score
ĺ	0	1.82	11	3.22
	1	2.23	12	4.62
	2	2.55	13	1.02
	3	3.59	14	1.40
	4	4.51	15	2.28
	5	0.75	16	3.09
	6	1.57	17	1.35
	7	4.43	18	1.47
	8	8.38	19	2.01
	9	0.78	20	2.41

1.40

CNN-based Authentication Algorithm

Experimental Setup

Commercial hand-tracking interfaces

- Google MediaPipe
- Leap Motion

Off-the-shelf Devices

- Regular RGB camera (ELECOM Webcam)
- Depth camera (Leap Motion Controller)

Data collection

- 25 participants
- Name initials and ``ABC"

Q Robot replay attack Implementation

- Hidden camera for eavesdropping
- A low-cost robotic arm for replay PincherX 150
- 3D-printed hand of the user

User Verification Performance

Different Motion Capture Devices

Multi-joint vs. Single-point

Joint vs. Inter-joint

College of Engineering

School of Electrical Engineering

& Computer Science

Enrollment Efforts

Increasing the training data size improves the system's performance but requires higher enrollment efforts.

LSU

Security Under Impersonation Attacks

□ Traditional single-point signature

- Relatively easy to imitate by an adversary
- Suffers highly from the visual tracking errors incurred by occlusion or self-occlusion

0.3 0.275 82.0 gt Bate Ealse Acceptance E 2.0 E 0.051 0.02 0 Joints + Int Single Point Joints Signature

Multiple joints compensate for the partially occluded hand and examines hand skeletons' inherent behaviors

Performance Under Robot Replay Attacks

Conclusion

- Introduce the 3D hand skeleton signature verification system to address emerging motion-copy robot threats
- Propose a novel three-view presentation method to describe hand skeleton motions
- Develop a CNN-based algorithm to verify in-air signatures at both the hand joint level and inter-joint level
- Implement a physical motion-copy robotic arm and demonstrate a new attack that exploits robots and 3D printing
- Experiments show 3D hand skeleton signature system achieves high performance and defeats robot replay attacks

Mobile and Internet SecuriTy (MIST) Lab

Back up

LSU

Signing Behavior

□ Varying speed at turning

□ Minute non-straight line

Simulated Robot Relay

 Virtual hand model that precisely followed the user's hand motion data

Physical Robot Replay

- Access to both the user's 3D hand skeleton model and signature trajectory samples

3D scanner and 3D printer

Attack Setup

Impersonation Attack

- Obtain the user's name and signing behavior data
- Observe and mimic

Verification Performance: Standardized Content

Write out the letters "ABC"

Performance Under Simulated Attacks

Question List

3D input?

- CNN is most efficient with 2D images
- Three different perspective, like in 3D modeling
- Enables us to examine each view more closely

Robot capability?

- Advancing attack vs. defense
- Commercial devices consider cost

Light condition?

