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Current Authentication Methods

qKnowledge-based secret
– PIN/password
– Patterns

qPhysiologic biometrics
– Fingerprint, face
– Iris
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Static Authentication Input:
• Can be lost, stolen, forgotten
• Can be spoofed and replicated



Emerging Behavioral Biometric Authentication

qVerifying dynamic motion characteristics
– Gait patterns
– Body motions and gestures
– Keystroke dynamics

qIn-air 3D signature is one representative 
of behavioral biometrics
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Hard to be copied or reproduced
 

Less dependent on dedicated hardware



In-air 3D signature

• Representative behavioral biometric authentication
• Inherits the traditional signature’s legal effect
• Enhanced security
– 3D handwriting curves 
– Signing behaviors

• Eliminates the need for a writing surface
• Supported by existing hand-tracking interfaces
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Current hand-tracking interfaces
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Have not considered threats of 
3D printing and motion-copy robots

RGB camera Depth Cameraor



qRely on the hand-like shape to 
recognize/track the hand

qIn-air signature is based on a 
single-point trajectory

Vulnerabilities of Hand Tracking Interfaces
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Forged by 3D Printed Hand

Depth CameraRGB Camera

Fake HandGoogle 
MediaPipe

Leap
Motion

Reproduce by Motion-copy Robots



Attack Strategy: Point-to-Point Robot Replay
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Write an ``S’’ Write a ``3’’

Write a ``Z’’ Write a ``W’’



Defense Against Robot Replays

qCurrent robots are still not able to copy 
hand-joint-level motions

qNovel hand joint-level authentication
- Extend the dimension of in-air signatures 
from a single point to multiple hand joints
- Leverage the hand’s kinematic structure 
motions to prevent robot replays
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3D Hand Skeleton Signature System
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Hand Skeleton Motion Data Extraction

q3D landmarks of a hand captured by visual sensor
qExamine 3D in-air signatures based on a novel graphical representation
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Multi-joint Data Normalization and Alignment

qCamera placement
• Predefined direction alignment
• Hand size normalization

qInconsistent signature curve
• Trajectory normalization

qVarying signing speed
• Trajectory interpolation
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Joint-level Motion Features Presentation

qHand skeleton signature
• Signature trajectory 
• Signing behavior
• Hand geometry

qIntegrate time information
qExamine from 3 different 

perspectives
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3D Signature

Front View
Side View

Top View



Three View-based Biometric Feature Presentation

qPresenting spatial information
– Three-view projection 

qPresenting temporal Information
– Gradient color from light to dark

qJoint significance weight 
assignment
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Inter-joint Motion Feature Derivation

qRelative distance relationships between hand joints
– Distinguish users
– Indicate human or robot replay 

qInter-joint motion profile: variance over time
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CNN-based Authentication Algorithm
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Experimental Setup

16

qCommercial hand-tracking interfaces
• Google MediaPipe
• Leap Motion

qOff-the-shelf Devices
• Regular RGB camera (ELECOM Webcam)
• Depth camera (Leap Motion Controller) 

qData collection
• 25 participants
• Name initials and ``ABC’’

qRobot replay attack Implementation
• Hidden camera for eavesdropping 
• A low-cost robotic arm for replay - PincherX 150
• 3D-printed hand of the user  
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Different Motion Capture Devices

Multi-joint vs. Single-point

Work well with both 
2D and 3D cameras

3D hand skeleton signature slightly 
improves the performance compared 

to traditional method
Inter-joint features also presents 

identifiable performance

Joint vs. Inter-joint



Enrollment Efforts

qIncreasing the training data size improves the system’s performance but 
requires higher enrollment efforts.
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Security Under Impersonation Attacks
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qTraditional single-point signature 
– Relatively easy to imitate by an 

adversary
– Suffers highly from the visual 

tracking errors incurred by occlusion 
or self-occlusion

Multiple joints compensate for the 
partially occluded hand and examines 
hand skeletons’ inherent behaviors
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Performance Under Robot Replay Attacks
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If allowing 5 tries, robot replay 
achieves 85.7% success rate

Joint- and inter-joint-level features 
are resistant to replay attacks. 



Conclusion

qIntroduce the 3D hand skeleton signature verification system to address 
emerging motion-copy robot threats

qPropose a novel three-view presentation method to describe hand skeleton 
motions

qDevelop a CNN-based algorithm to verify in-air signatures at both the hand 
joint level and inter-joint level

qImplement a physical motion-copy robotic arm and demonstrate a new attack 
that exploits robots and 3D printing

qExperiments show 3D hand skeleton signature system achieves high 
performance and defeats robot replay attacks
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Back up

23



Signing Behavior
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qVarying speed at turning

qMinute non-straight line



Attack Setup

q Impersonation Attack
– Obtain the user’s name and signing behavior data
– Observe and mimic

qPhysical Robot Replay
– Access to both the user’s 3D hand skeleton model 

and signature trajectory samples
– 3D scanner and 3D printer

q Simulated Robot Relay
– Virtual hand model that precisely followed the 

user’s hand motion data
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Effectively verify the signing 
behaviors as opposed to 

signature curves

Write out the letters “ABC”



Performance Under Simulated Attacks
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General Hand Model User’s Hand Model
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Our system is robust against replay attacks

Inter-joint motion features are important in distinguishing between 
authentic and replayed hand skeleton signatures.



Question List

q3D input?
– CNN is most efficient with 2D images
– Three different perspective, like in 3D modeling
– Enables us to examine each view more closely

qRobot capability?
– Advancing attack vs. defense
– Commercial devices consider cost

qLight condition?
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