TLTI

RandCompile Removing Forensic Gadgets from the Linux
Kernel to Combat its Analysis

Fabian Franzen, Andreas Chris Wilhelmer, Jens Grossklags
Technical University of Munich

December 7, 2023

. Current State of Memory Forensics
. How to combat Modern Forensic Tools: RandCompile
. Evaluation

S~ w N

. Future Research & Conclusion

Current State of Memory Forensics

Intro

» Memory-Forensic: The science of
deducting information about an operating
system state out of @ memory dump

» Allows to reason about
» Process List
> (Cryptographic-)Secrets
> |Ps/MAC-Addresses of devices in proximity
>

nANAN
RAM

» Complexity depends on available
information.

> Debugging Symbols of operating system

Recent Developments in Linux Memory Forensics

New Challenges for analysts:

» Structure Layout Randomization (since 2017)

» Binary Layout of data structures is modified at compile time.
» Primarily a Binary Exploitation defense, but effective against forensic tools

Recent Developments in Linux Memory Forensics

New Challenges for analysts:

» Structure Layout Randomization (since 2017)

» Binary Layout of data structures is modified at compile time.
» Primarily a Binary Exploitation defense, but effective against forensic tools

Research Progress:

» Tools are capable to deal with Structure Layout Randomization
» 0OS-agnostic tools

» Certain implementation characteristics are shared between 0OSes
» Operate with minimal additional information on MacOS, Linux, Windows, and
other operating systems

Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):

» Special Comm - "Special” strings allowing easy identification of the process
list in the memory dump.

Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
» Special Comm - "Special” strings allowing easy identification of the process
list in the memory dump.
» Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, ...).

Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):

» Special Comm - "Special” strings allowing easy identification of the process
list in the memory dump.

» Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, ...).

» ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):

» Special Comm - "Special” strings allowing easy identification of the process
list in the memory dump.

» Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, ...).

» ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

» Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):

» Special Comm - "Special” strings allowing easy identification of the process
list in the memory dump.

» Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, ...).

» ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

» Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

» Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

Systematization of Last Generation Tools

5 £ 8 <

O F % « ©O

5 3 8 o 8

T 2 o e *®

2 E =382

n O < O o
Tool Year Analysis Subject i Recovery Scope
Linux-specific
KATANA 2022 Offset Revealing Instructions X X All structures
Trustzone Rootkit 2022 Kernel Runtime Data X Selected structures
LOGICMEM 2022 Kernel Runtime Data X X X X Selected structures
AUTOPROFILE 2021 Offset Revealing Instructions X X X All structures
0S-agnostic
FossIL 2023 Kernel Runtime Data X X Allstructures
HYPERLINK 2016 Kernel Runtime Data X X Selected structures

How to Combat Modern Memory Forensic Tools?

Design Goals of RandCompile

Harden Linux systems against automated forensic analysis

Forensic Gadgets Transformation
FG-1 FG2 FG-3 FG-4 FG-5 GCCPlugin Manual

String and Pointer Encryption v v v
Better Data-Order Randomization v v
Externalize printk Format Strings v v
Adding Bogus Parameters with Ar- v v

tificial Memory Accesses

» Perform selected transformations on the kernel to remove four out five
forensic gadgets.
> two are automatically applied (by a compiler plugin)
» two applied manually in form of kernel patch
» Disclaimer: Perfect Obfuscation is in general not possible! This is a
hardening mechanism against automated tools.

ABl Randomization

Example:
KATANA and AUTOPROFILE tal’get FG 3 1 do_stuff(current-)mmo, current->
» Offset Revealing Instructions reveal — cred®, §20);
layout of data structures l
» ABI mandates calling convention Tmov rdx®, oxfFFFFFff82019c60
» Allows a structural matching of 2| mov rax,QWORD PTR gs:0x16d00
generated machine code with the 3smov. rsi®,QWORD PTR [rax+@x10]

4| mov rdi®,QWORD PTR [rax+0x440]

source code S| call FEFFFFFFB11bacdd <do_stuff>

ABl Randomization

Countermeasures by RandCompile Example:
» Shuffle the order of the arguments 1|do_stuff(current->cred®, current->mm
at call site and implementation site — @, 828);
» Applied automatically to all l

functions through a compiler plugin.

11 mov rdx®,0xffffffff82019c60
2| mov rax,QWORD PTR gs:0x16d00
Issues 3| mov rsi®,QWORD PTR [rax+0x440]

- . J/mov rdi@®,QWORD PTR [rax+0x10]
> Functions with few parameters have | .11 fereferfaiibacdo <do_stuffs
few possibilities for randomization

ABl Randomization

Example:

11int64_t bogusstuff[6];
2l do_stuff(current->cred®, current->mm
— @, bogusstuff[0]®, &g@,

We can add bogus parameters to <> bogusstuff[3]1®, bogusstuff[5]
functions with few parameters = 0);
» This can be undone by an analysis l
tool that has access to the source
code 1| mov rcx®,Oxffffffff82019c60
2| mov r8®,0WORD PTR [rsp+0x18]
» Also add bogus assembly code 3| mov r9®,0WORD PTR [rsp+0x28]
hurthwg perfornwance 4| mov rax,QWORD PTR gs:0x16d00

5| mov rsi®,QWORD PTR [rax+0x440]
6| mov rdx®,QWORD PTR [rsp]

7| mov rdi®,QWORD PTR [rax+0x10]

gl call ffffffff811bacd® <do_stuff>

Pointer & String Encryption

HYPERLINK and FossiL analyse the pointer graph of kernel objects (FG 5).
> e.g the process information objects are connected by a linked list.

» first process in list contains well-known string (FG 1).

init_task

tasks->next

comm: "swapper/0"

cred

| —

tasks->next

comm: "init"
cred

=l

tasks->next

comm:
cred

"sh"

\

Pointer & String Encryption

HYPERLINK and FossiL analyse the pointer graph of kernel objects (FG 5).
> e.g the process information objects are connected by a linked list.

» first process in list contains well-known string (FG 1).
» Encrypt Pointers and Strings in process information objects

init_task

Ex(tasks->next) >

comm: Ex("swapper/0")

cred

Ex(tasks->next)

comm: Eg("init")
cred

=l

Ex(tasks->next)

comm: Eg("sh")
cred

\

Pointer & String Encryption

HYPERLINK and FossiL analyse the pointer graph of kernel objects (FG 5).
> e.g the process information objects are connected by a linked list.

» first process in list contains well-known string (FG 1).
» Encrypt Pointers and Strings in process information objects

init_task

tasks->next

comm: XXXXX
cred

2a3

tasks->next

comm: XXXXX
cred

BA3

tasks->next

comm: XXXXX
cred

\

Pointer & String Encryption

HYPERLINK and FossiL analyse the pointer graph of kernel objects (FG 5).
> e.g the process information objects are connected by a linked list.

» first process in list contains well-known string (FG 1).
» Encrypt Pointers and Strings in process information objects
» Store Encryption Key as immediate value in the compiled machine code.

/ \
‘ init_task ‘
\\ //
NN L5 - _~
comm: comm: comm:
cred cred cred

e \

Evaluation

Effectiveness against Offset Revealing Instruction based Analysis

:qj
2] g 92 2
B BE B =
t% Ex E3 E
o O (&} "E (&) 'E' (@]
2 5 2E B2E 22
g 88 g8 gf g8
List Modules v v v v v
Members reconstructed 2 2 2 2 2
Task Listing v X X X X
Members reconstructed 6 5 5 4 4
List Files v X X X X
Members reconstructed 16 15 8 7 7
Dmesg Log v 4 v v X

» We perform the core analysis of KaTana with and without RandCompile.
» Already a single fault during reconstruction causes a fault!

Effectiveness against Kernel Runtime Data Analysis

» Encryption of the string "swapper/0" (FG-1) is most effective.

» Stops LOGICMEM, Trustzone Rootkit, and HYPERLINK from operating
» FossIL analysis performance is degraded. It depends on the analysts queries.

» Pointer Encryption
» Degrades analysis opportunities of LOGICMEM, Trustzone Rootkit, and HYPERLINK
further
» Further degrades attack possibilities of FOSSIL
» Future Work: Encrypt also other kernel pointers

Performance

Results using the [mbench Microbenchmark (runtimes are normalized to 1):

1.3 1

0o only Obf.
1.2 00 NoBogus
[0 NoMemRef
1.1 Im Ful
. - N
1 l;{ & Ef;l Iq: I T=I EEII = TI _ il:
o»LALN 1l AN | | A Dl 10
& S & & F P @ §F & & F ¢
54? O\Q <) 8 o)QQ < & Q {0& o 62% ,é\b
OQ?‘ \e‘éK @QQ :@&x 6§. « %"0
& @\@o‘ éi s %&0

14

Performance

Results using the [mbench Microbenchmark (runtimes are normalized to 1):
» Less than 1-3 percent overhead on average

13

0o only Obf.
1.2 00 NoBogus
[0 NoMemRef
1.1 Im Ful
. - N
1 il fﬂl i I T=I EEII = TI ~ iI:
o»LALN 1l AN | | A Dl 10
& & & & tig S @ & = & & o
54? O\Q <) 8 o)QQ < & Q {0& o 62% ,é\b
OQ?‘ \e‘éK @QQ :@&x 6§. « %"0
& @\@o‘ éi s %&0

14

Discussion

» Are you applying only sound transformations?

» Yes. RandCompile does not change the semantic/core functionality of the Linux
kernel.

» Does not confidential computing (CC) (like AMD-SEV) mitigate this problem?

» RandCompile complements protection of CC approaches. I.e. AMD-SEV expects
a Linux kernel to not trust his drivers.

» Can this be used as a binary exploitation defense?

» Yes. In combination with Control Flow Integrity protections, it makes abusing
existing kernel functions in ROP chains harder.

» Is it a problem that the defenses are applied at compile time?

» Partially. Applying them during runtime would allow for more widespread use.
Applying them at compile time adds diversity to the binary layout.

Conclusion

Conclusion

» RandCompile is an obfuscation tool
for the Linux Kernel to harden it
various memory forensic tools.

> Itis effective against modern
forensic analysis tools.
» |t completes and extends the

Structure Layout Randomization, a
main“ned Linux kernel feature. We have source Code!

	Current State of Memory Forensics
	How to Combat Modern Memory Forensic Tools?
	Evaluation
	Conclusion

