
RandCompile Removing Forensic Gadgets from the Linux
Kernel to Combat its Analysis

Fabian Franzen, Andreas Chris Wilhelmer, Jens Grossklags
Technical University of Munich

December 7, 2023



Outline

1. Current State of Memory Forensics
2. How to combat Modern Forensic Tools: RandCompile
3. Evaluation
4. Future Research & Conclusion

1



Current State of Memory Forensics



Intro

I Memory-Forensic: The science of
deducting information about an operating
system state out of a memory dump

I Allows to reason about
I Process List
I (Cryptographic-)Secrets
I IPs/MAC-Addresses of devices in proximity
I …

I Complexity depends on available
information.
I Debugging Symbols of operating system

�

2



Recent Developments in Linux Memory Forensics

New Challenges for analysts:
I Structure Layout Randomization (since 2017)

I Binary Layout of data structures is modified at compile time.
I Primarily a Binary Exploitation defense, but effective against forensic tools

Research Progress:
I Tools are capable to deal with Structure Layout Randomization
I OS-agnostic tools

I Certain implementation characteristics are shared between OSes
I Operate with minimal additional information on MacOS, Linux, Windows, and
other operating systems

3



Recent Developments in Linux Memory Forensics

New Challenges for analysts:
I Structure Layout Randomization (since 2017)

I Binary Layout of data structures is modified at compile time.
I Primarily a Binary Exploitation defense, but effective against forensic tools

Research Progress:
I Tools are capable to deal with Structure Layout Randomization
I OS-agnostic tools

I Certain implementation characteristics are shared between OSes
I Operate with minimal additional information on MacOS, Linux, Windows, and
other operating systems

3



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Systematization of Last Generation Tools

Tool Year Analysis Subject FG
1:
Sp
ec
ia
lc
om

m

FG
2:
Sy
m
bo
lT
ab
le
s

FG
3:
AB
IC
on
st
ra
in
ts

FG
4:
O
rd
er
of
Fi
el
ds

FG
5:
Po
in
te
rG
ra
ph

Recovery Scope

Linux-specific
Katana 2022 Offset Revealing Instructions 7 7 All structures
Trustzone Rootkit 2022 Kernel Runtime Data 7 Selected structures
LogicMem 2022 Kernel Runtime Data 7 7 7 7 Selected structures
AutoProfile 2021 Offset Revealing Instructions 7 7 7 All structures

OS-agnostic
Fossil 2023 Kernel Runtime Data 7 7 All structures
HyperLink 2016 Kernel Runtime Data 7 7 Selected structures

5



How to Combat Modern Memory Forensic Tools?



Design Goals of RandCompile

Harden Linux systems against automated forensic analysis

6



Design

Forensic Gadgets Transformation

FG-1 FG-2 FG-3 FG-4 FG-5 GCC Plugin Manual

String and Pointer Encryption 3 3 3

Better Data-Order Randomization 3 3

Externalize printk Format Strings 3 3

Adding Bogus Parameters with Ar-
tificial Memory Accesses

3 3

I Perform selected transformations on the kernel to remove four out five
forensic gadgets.
I two are automatically applied (by a compiler plugin)
I two applied manually in form of kernel patch

I Disclaimer: Perfect Obfuscation is in general not possible! This is a
hardening mechanism against automated tools.

7



ABI Randomization

Katana and AutoProfile target FG 3
I Offset Revealing Instructions reveal
layout of data structures

I ABI mandates calling convention
I Allows a structural matching of
generated machine code with the
source code

Example:
1 do_stuff(current->mm¶, current->

↪→ cred·, &g¸);

1 mov rdx¸,0xffffffff82019c60
2 mov rax,QWORD PTR gs:0x16d00
3 mov rsi·,QWORD PTR [rax+0x10]
4 mov rdi¶,QWORD PTR [rax+0x440]
5 call ffffffff811bacd0 <do_stuff>

8



ABI Randomization

Countermeasures by RandCompile
I Shuffle the order of the arguments
at call site and implementation site

I Applied automatically to all
functions through a compiler plugin.

Issues
I Functions with few parameters have
few possibilities for randomization

Example:
1 do_stuff(current->cred¶, current->mm

↪→ ·, &g¸);

1 mov rdx¸,0xffffffff82019c60
2 mov rax,QWORD PTR gs:0x16d00
3 mov rsi·,QWORD PTR [rax+0x440]
4 mov rdi¶,QWORD PTR [rax+0x10]
5 call ffffffff811bacd0 <do_stuff>

9



ABI Randomization

We can add bogus parameters to
functions with few parameters
I This can be undone by an analysis
tool that has access to the source
code

I Also add bogus assembly code
hurting performance

Example:
1 int64_t bogusstuff[6];
2 do_stuff(current->cred¶, current->mm

↪→ ·, bogusstuff[0]¸, &g¹,
↪→ bogusstuff[3]º, bogusstuff[5]
↪→ »);

1 mov rcx¹,0xffffffff82019c60
2 mov r8º,QWORD PTR [rsp+0x18]
3 mov r9»,QWORD PTR [rsp+0x28]
4 mov rax,QWORD PTR gs:0x16d00
5 mov rsi·,QWORD PTR [rax+0x440]
6 mov rdx¸,QWORD PTR [rsp]
7 mov rdi¶,QWORD PTR [rax+0x10]
8 call ffffffff811bacd0 <do_stuff>

10



Pointer & String Encryption
HyperLink and Fossil analyse the pointer graph of kernel objects (FG 5).
I e.g. the process information objects are connected by a linked list.
I first process in list contains well-known string (FG 1).

I Encrypt Pointers and Strings in process information objects

I Store Encryption Key as immediate value in the compiled machine code.

init_task

tasks->next tasks->next tasks->next

comm: "swapper/0" comm: "init" comm: "sh"
cred cred cred

root cred
11



Pointer & String Encryption
HyperLink and Fossil analyse the pointer graph of kernel objects (FG 5).
I e.g. the process information objects are connected by a linked list.
I first process in list contains well-known string (FG 1).
I Encrypt Pointers and Strings in process information objects

I Store Encryption Key as immediate value in the compiled machine code.

init_task

EK(tasks->next) EK(tasks->next) EK(tasks->next)

comm: EK("swapper/0") comm: EK("init") comm: EK("sh")
cred cred cred

root cred
11



Pointer & String Encryption
HyperLink and Fossil analyse the pointer graph of kernel objects (FG 5).
I e.g. the process information objects are connected by a linked list.
I first process in list contains well-known string (FG 1).
I Encrypt Pointers and Strings in process information objects

I Store Encryption Key as immediate value in the compiled machine code.

init_task

tasks->next tasks->next tasks->next

comm: XXXXX comm: XXXXX comm: XXXXX
cred cred cred

root cred

x x

x

11



Pointer & String Encryption
HyperLink and Fossil analyse the pointer graph of kernel objects (FG 5).
I e.g. the process information objects are connected by a linked list.
I first process in list contains well-known string (FG 1).
I Encrypt Pointers and Strings in process information objects

I Store Encryption Key as immediate value in the compiled machine code.

init_task

comm: comm: comm:
cred cred cred

root cred
11



Evaluation



Effectiveness against Offset Revealing Instruction based Analysis

Ba
se

Ra
nd
Co
m
pi
le

(n
o
bo
gu
s)

Ra
nd
Co
m
pi
le

(-
pr
in
tk
,-
m
em

re
f)

Ra
nd
Co
m
pi
le

(-
pr
in
tk
)

Ra
nd
Co
m
pi
le

(fu
ll)

List Modules 3 3 3 3 3

Members reconstructed 2 2 2 2 2
Task Listing 3 7 7 7 7

Members reconstructed 6 5 5 4 4
List Files 3 7 7 7 7

Members reconstructed 16 15 8 7 7
Dmesg Log 3 3 3 3 7

I We perform the core analysis of Katana with and without RandCompile.
I Already a single fault during reconstruction causes a fault!

12



Effectiveness against Kernel Runtime Data Analysis

I Encryption of the string "swapper/0" (FG-1) is most effective.
I Stops LogicMem, Trustzone Rootkit, and HyperLink from operating
I Fossil analysis performance is degraded. It depends on the analysts queries.

I Pointer Encryption
I Degrades analysis opportunities of LogicMem, Trustzone Rootkit, and HyperLink
further

I Further degrades attack possibilities of Fossil
I Future Work: Encrypt also other kernel pointers

13



Performance

Results using the lmbench Microbenchmark (runtimes are normalized to 1):

I Less than 1-3 percent overhead on average

14



Performance

Results using the lmbench Microbenchmark (runtimes are normalized to 1):
I Less than 1-3 percent overhead on average

14



Discussion

I Are you applying only sound transformations?
I Yes. RandCompile does not change the semantic/core functionality of the Linux
kernel.

I Does not confidential computing (CC) (like AMD-SEV) mitigate this problem?
I RandCompile complements protection of CC approaches. I.e. AMD-SEV expects
a Linux kernel to not trust his drivers.

I Can this be used as a binary exploitation defense?
I Yes. In combination with Control Flow Integrity protections, it makes abusing
existing kernel functions in ROP chains harder.

I Is it a problem that the defenses are applied at compile time?
I Partially. Applying them during runtime would allow for more widespread use.
Applying them at compile time adds diversity to the binary layout.

15



Conclusion



Conclusion

I RandCompile is an obfuscation tool
for the Linux Kernel to harden it
various memory forensic tools.

I It is effective against modern
forensic analysis tools.

I It completes and extends the
Structure Layout Randomization, a
mainlined Linux kernel feature. We have source code!

16


	Current State of Memory Forensics
	How to Combat Modern Memory Forensic Tools?
	Evaluation
	Conclusion

