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Current State of Memory Forensics



Intro

I Memory-Forensic: The science of
deducting information about an operating
system state out of a memory dump

I Allows to reason about
I Process List
I (Cryptographic-)Secrets
I IPs/MAC-Addresses of devices in proximity
I …

I Complexity depends on available
information.
I Debugging Symbols of operating system

�

2



Recent Developments in Linux Memory Forensics

New Challenges for analysts:
I Structure Layout Randomization (since 2017)

I Binary Layout of data structures is modified at compile time.
I Primarily a Binary Exploitation defense, but effective against forensic tools

Research Progress:
I Tools are capable to deal with Structure Layout Randomization
I OS-agnostic tools

I Certain implementation characteristics are shared between OSes
I Operate with minimal additional information on MacOS, Linux, Windows, and
other operating systems
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Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Forensic Gadgets

We systematized and grouped last-generation tools by the essential OS artifacts
used to enable their analysis (Forensic Gadgets):
I Special Comm - ”Special” strings allowing easy identification of the process
list in the memory dump.

I Symbol Tables - The OS maintaines a list of its own functions/global
variables for dynamic loading of drivers and or additional functionality (eBPF,
ftrace, …).

I ABI Constraints - The compiled kernel code follows predictable patterns
revealing location/layout of data structures (i.e. using offset revealing
instructions).

I Order of Fields - The data structure layout (especially without Structure
Layout Randomization) is forseeable.

I Pointer Graph - The pointers between the kernel objects form a characteristic
graph revealing e.g. the process list uniquely out of the set of objects.

4



Systematization of Last Generation Tools
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Recovery Scope

Linux-specific
Katana 2022 Offset Revealing Instructions 7 7 All structures
Trustzone Rootkit 2022 Kernel Runtime Data 7 Selected structures
LogicMem 2022 Kernel Runtime Data 7 7 7 7 Selected structures
AutoProfile 2021 Offset Revealing Instructions 7 7 7 All structures

OS-agnostic
Fossil 2023 Kernel Runtime Data 7 7 All structures
HyperLink 2016 Kernel Runtime Data 7 7 Selected structures
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How to Combat Modern Memory Forensic Tools?



Design Goals of RandCompile

Harden Linux systems against automated forensic analysis
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Design

Forensic Gadgets Transformation

FG-1 FG-2 FG-3 FG-4 FG-5 GCC Plugin Manual

String and Pointer Encryption 3 3 3

Better Data-Order Randomization 3 3

Externalize printk Format Strings 3 3

Adding Bogus Parameters with Ar-
tificial Memory Accesses

3 3

I Perform selected transformations on the kernel to remove four out five
forensic gadgets.
I two are automatically applied (by a compiler plugin)
I two applied manually in form of kernel patch

I Disclaimer: Perfect Obfuscation is in general not possible! This is a
hardening mechanism against automated tools.

7



ABI Randomization

Katana and AutoProfile target FG 3
I Offset Revealing Instructions reveal
layout of data structures

I ABI mandates calling convention
I Allows a structural matching of
generated machine code with the
source code

Example:
1 do_stuff(current->mm¶, current->

↪→ cred·, &g¸);

1 mov rdx¸,0xffffffff82019c60
2 mov rax,QWORD PTR gs:0x16d00
3 mov rsi·,QWORD PTR [rax+0x10]
4 mov rdi¶,QWORD PTR [rax+0x440]
5 call ffffffff811bacd0 <do_stuff>
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ABI Randomization

Countermeasures by RandCompile
I Shuffle the order of the arguments
at call site and implementation site

I Applied automatically to all
functions through a compiler plugin.

Issues
I Functions with few parameters have
few possibilities for randomization

Example:
1 do_stuff(current->cred¶, current->mm

↪→ ·, &g¸);

1 mov rdx¸,0xffffffff82019c60
2 mov rax,QWORD PTR gs:0x16d00
3 mov rsi·,QWORD PTR [rax+0x440]
4 mov rdi¶,QWORD PTR [rax+0x10]
5 call ffffffff811bacd0 <do_stuff>
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ABI Randomization

We can add bogus parameters to
functions with few parameters
I This can be undone by an analysis
tool that has access to the source
code

I Also add bogus assembly code
hurting performance

Example:
1 int64_t bogusstuff[6];
2 do_stuff(current->cred¶, current->mm

↪→ ·, bogusstuff[0]¸, &g¹,
↪→ bogusstuff[3]º, bogusstuff[5]
↪→ »);

1 mov rcx¹,0xffffffff82019c60
2 mov r8º,QWORD PTR [rsp+0x18]
3 mov r9»,QWORD PTR [rsp+0x28]
4 mov rax,QWORD PTR gs:0x16d00
5 mov rsi·,QWORD PTR [rax+0x440]
6 mov rdx¸,QWORD PTR [rsp]
7 mov rdi¶,QWORD PTR [rax+0x10]
8 call ffffffff811bacd0 <do_stuff>
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Pointer & String Encryption
HyperLink and Fossil analyse the pointer graph of kernel objects (FG 5).
I e.g. the process information objects are connected by a linked list.
I first process in list contains well-known string (FG 1).

I Encrypt Pointers and Strings in process information objects

I Store Encryption Key as immediate value in the compiled machine code.

init_task

tasks->next tasks->next tasks->next

comm: "swapper/0" comm: "init" comm: "sh"
cred cred cred

root cred
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Evaluation



Effectiveness against Offset Revealing Instruction based Analysis
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List Modules 3 3 3 3 3

Members reconstructed 2 2 2 2 2
Task Listing 3 7 7 7 7

Members reconstructed 6 5 5 4 4
List Files 3 7 7 7 7

Members reconstructed 16 15 8 7 7
Dmesg Log 3 3 3 3 7

I We perform the core analysis of Katana with and without RandCompile.
I Already a single fault during reconstruction causes a fault!
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Effectiveness against Kernel Runtime Data Analysis

I Encryption of the string "swapper/0" (FG-1) is most effective.
I Stops LogicMem, Trustzone Rootkit, and HyperLink from operating
I Fossil analysis performance is degraded. It depends on the analysts queries.

I Pointer Encryption
I Degrades analysis opportunities of LogicMem, Trustzone Rootkit, and HyperLink
further

I Further degrades attack possibilities of Fossil
I Future Work: Encrypt also other kernel pointers
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Performance

Results using the lmbench Microbenchmark (runtimes are normalized to 1):

I Less than 1-3 percent overhead on average
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Discussion

I Are you applying only sound transformations?
I Yes. RandCompile does not change the semantic/core functionality of the Linux
kernel.

I Does not confidential computing (CC) (like AMD-SEV) mitigate this problem?
I RandCompile complements protection of CC approaches. I.e. AMD-SEV expects
a Linux kernel to not trust his drivers.

I Can this be used as a binary exploitation defense?
I Yes. In combination with Control Flow Integrity protections, it makes abusing
existing kernel functions in ROP chains harder.

I Is it a problem that the defenses are applied at compile time?
I Partially. Applying them during runtime would allow for more widespread use.
Applying them at compile time adds diversity to the binary layout.
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Conclusion



Conclusion

I RandCompile is an obfuscation tool
for the Linux Kernel to harden it
various memory forensic tools.

I It is effective against modern
forensic analysis tools.

I It completes and extends the
Structure Layout Randomization, a
mainlined Linux kernel feature. We have source code!
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