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Vulnerability Discovery

Classical Static Vulnerability Detection
— Manually crafted rules
— Often high false positive rate

— For example
o Flawfinder, CPPCheck
o Coverity, Clang Analyzer

Definition of a Vulnerability Detector

A method for static vulnerability discovery is a decision function f: x
P(vuln | z) that maps a piece of code x to its probability of being vulnerable.



Learning-based Vulnerability Discovery

Learning-based Static Vulnerability Detection
— Learns rules

— Requires dataset

— Adjustable threshold

— Representation learning

Definition of a Learning-based Vulnerability Detector

T X

value = xname;
value <<= 5;
if (len > 10) {
value += name[len - (plen + 1 + 1)];

FunctionDeclaration

lm

Reference Reference

A static learning-based vulnerability discovery method is a parametrized hypothesis

function fy : * — P(vuln|x) that extracts a representation = and
of being vulnerable.

maps it to a probability



Problem Setting

Apply vulnerability detector on each patch (CI/CD)

Problems with patches:
— Context-sensitive changes
— Non-coherent changes

— Evolution of Software

Example: Heartbleed Bug

Commit introducing the bug:

— Touches 12 Files

— 5 Header Files

—In 2 different packages

= v LN e LA BO e

10
11
12
13
14
15
16

if (hbtype == TLS1_HB_REQUEST)

{

unsigned char xbuffer, *bp;
int r;

/* Allocate memory for the response, size is 1 byte
* message type, plus 2 bytes payload length, plus
* payload, plus padding
*/

buffer = OPENSSL_malloc(l + 2 + payload + padding);

bp = buffer;

/* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy (bp, pl, payload);




Naive Solution

Use Existing Learning-based Discovery Methods: Better Idea:
Feed them Inputs with Patch Context |dentify security relevant Paths

Problem: Feature Space explodes Only consider those intersecting Changes




Methodology
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Representation

Obtain composite code graph
Insert call edges

Insert interprocedural data flow
Perform value-set analysis

Create security-relevant slices



Causal Graph Neural Network

Graph separated into Artifacts and causal Subgraph
P P grap }.-“ﬁlf; %
A

Separation learned by network \/

Prediction only on causal Subgraph @ o @

Causal
C




Training dataset

Previous datasets contain only vulnerabllity-fixing patches

We try to find vulnerability-introducing patches

Very difficult to collect

Instead: Find patches that touch vulnerable code
From vulnerability-fixing patches, go back in time
Patches on same methods are vulnerable

Patches on other methods are assumed to be clean
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Experiments
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Research Questions

How do other strategies compare to PAVUDI?
How does the size of a commit affect the performance?
How does PAVUDI behave after training and deployment?

How do the individual components of PAVUDI contribute to the detection

capability?

12



Model Baselines

Learning-based Graph Vulnerability Detectors

=  DeepWuKong

= ReVeal
= Devign
= BGNN4VD

Learning-based Token Vulnerability Detectors
= SySeVR

= VulDeePecker

Heuristics-based Vulnerability Detector

= VUDDY

Not Applicable to Patches!
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Application Strategies
Apply Models to Fragments of the Patch and aggregate prediction score
Max
Mean
Probability
|sotonic

Commit
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How do other strategies compare to PAVUDI?
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How do other strategies compare to PAVUDI?
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How do other strategies compare to PAVUDI?

ROC AUC
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How does the size of a commit affect the performance?
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How does PAVUDI behave after training and deployment?
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=04 How do individual components of PAVUDI contribute to its capabilities?
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Conclusion
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Conclusion

Patches are the atomic unit of modern software development
Existing vulnerability detectors are badly suited to patches
|dentified five previously undisclosed bugs

We introduce a patch-based vulnerabiliyt discovery (PAVUDI)
With a new interprocedural code representation
An explainable graph neural network

Our solution
has more than 50% increased detection performance
IS twice as robust against concept drift

Public Implementation: https://github.com/SAP-samples/security-research-taintgraphs
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https://github.com/SAP-samples/security-research-taintgraphs

Thank you.
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