PAVUDI:

Tom Ganz?!, Erik Imgrund?!, Martin Harterich!, Konrad Rieck?
AlSec ’23

1 SAP Security Research
2TU Berlin

Introduction

2\

[
I @ = = = = = =
= = = = = =
= = = = = =

Vulnerability Discovery

Classical Static Vulnerability Detection
— Manually crafted rules
— Often high false positive rate

— For example
o Flawfinder, CPPCheck
o Coverity, Clang Analyzer

Definition of a Vulnerability Detector

A method for static vulnerability discovery is a decision function f: x
P(vuln | z) that maps a piece of code x to its probability of being vulnerable.

Learning-based Vulnerability Discovery

Learning-based Static Vulnerability Detection
— Learns rules

— Requires dataset

— Adjustable threshold

— Representation learning

Definition of a Learning-based Vulnerability Detector

T X

value = xname;
value <<= 5;
if (len > 10) {
value += name[len - (plen + 1 + 1)];

FunctionDeclaration

lm

Reference Reference

A static learning-based vulnerability discovery method is a parametrized hypothesis

function fy : * — P(vuln|x) that extracts a representation = and
of being vulnerable.

maps it to a probability

Problem Setting

Apply vulnerability detector on each patch (CI/CD)

Problems with patches:
— Context-sensitive changes
— Non-coherent changes

— Evolution of Software

Example: Heartbleed Bug

Commit introducing the bug:

— Touches 12 Files

— 5 Header Files

—In 2 different packages

= v LN e LA BO e

10
11
12
13
14
15
16

if (hbtype == TLS1_HB_REQUEST)

{

unsigned char xbuffer, *bp;
int r;

/* Allocate memory for the response, size is 1 byte
* message type, plus 2 bytes payload length, plus
* payload, plus padding
*/

buffer = OPENSSL_malloc(l + 2 + payload + padding);

bp = buffer;

/* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy (bp, pl, payload);

Naive Solution

Use Existing Learning-based Discovery Methods: Better Idea:
Feed them Inputs with Patch Context |dentify security relevant Paths

Problem: Feature Space explodes Only consider those intersecting Changes

Methodology

2\

[
I @ = = = = = =
= = = = = =
= = = = = =

Representation

Obtain composite code graph
Insert call edges

Insert interprocedural data flow
Perform value-set analysis

Create security-relevant slices

Causal Graph Neural Network

Graph separated into Artifacts and causal Subgraph
P P grap }.-“ﬁlf; %
A

Separation learned by network \/

Prediction only on causal Subgraph @ o @

Causal
C

Training dataset

Previous datasets contain only vulnerabllity-fixing patches

We try to find vulnerability-introducing patches

Very difficult to collect

Instead: Find patches that touch vulnerable code
From vulnerability-fixing patches, go back in time
Patches on same methods are vulnerable

Patches on other methods are assumed to be clean

10

Experiments

2\

[
I @ = = = = = =
= = = = = =
= = = = = =

Research Questions

How do other strategies compare to PAVUDI?
How does the size of a commit affect the performance?
How does PAVUDI behave after training and deployment?

How do the individual components of PAVUDI contribute to the detection

capability?

12

Model Baselines

Learning-based Graph Vulnerability Detectors

= DeepWuKong

= ReVeal
= Devign
= BGNN4VD

Learning-based Token Vulnerability Detectors
= SySeVR

= VulDeePecker

Heuristics-based Vulnerability Detector

= VUDDY

Not Applicable to Patches!

13

Application Strategies
Apply Models to Fragments of the Patch and aggregate prediction score
Max
Mean
Probability
|sotonic

Commit

14

How do other strategies compare to PAVUDI?

FFmpeg

1.0
0.8
S 0.6
Q0.4
0.2]
0.0

0.00 0.25 0.50 0.75 1.00
F1-Score

v TaintGraph DeepWukong Proba
DeepWukong Max DeepWukong Mean

QEMU

1.0
0.8 v

S061 &

Q0.4
0.2
0.0

0.00 0.25 0.50 0.75 1.00
F1-Score

DeepWukong Isotonic ® \Vuddy Max
v Vuddy Commit

15

How do other strategies compare to PAVUDI?

FFmpeg
1.0
v
0.81
‘2)06 .
Ona. *
SC)o.4
021 %
0.01
0.00 0.25 050 0.75 1.00
F1-Score

v TaintGraph
VulDeepecker Commit

VulDeepecker Max
VulDeepecker Proba

QEMU
1.0
0.8 v
90.6 ¢
<Dt X ®
U i
Q0.4
a'd
0.2
0.0
0.00 025 050 0.75 1.00

VulDeepecker Mean
VulDeepecker Isotonic

F1-Score

® SySeVR Max X SySeVR Mean
A SySeVR Proba @ SySeVR Isotonic

16

How do other strategies compare to PAVUDI?

ROC AUC
c o o o -
N P o ® O

o
o

FFmpeg

0.00 0.25 0.50

F1-Score

TaintGraph
Devign Max
Devign Proba ®
Devign Mean A

0.75 1.00

Devign Isotonic
Devign Commit
ReVeal Max
ReVeal Proba

® 4 8 <«

QEMU
1.0
0.8 2 v
O 0.6
?E Yo
§0 4 of
0.2 v
0.01

0.00

ReVeal Mean

ReVeal Isotonic
ReVeal Commit
BGNN4VD Max

0.25 050 0.75 1.00
F1-Score

BGNN4VD Proba
BGNN4VD Mean
BGNN4VD lIsotonic
BGNN4VD Commit

48 > P>

17

How does the size of a commit affect the performance?

=
o
o

o
N
Ul

Balance Accuracy
o o
N ul
Ul o

o
o
o

—— TaintGraph

FFmpeg

5 10 15 20 25
More than #Methods

—— ReVeal

Devign —— BGNN4VD

o =
~ o
Ul o

Balance Accuracy
o
ul
o

QEMU

=5

0.25
0.00
5 10 15 20 25
More than #Methods
Vuddy —— VulDeepecker
DeepWukong SySeVR

18

How does PAVUDI behave after training and deployment?

F1-Score

FFmpeg
1.00;
0.75; ___—_______§§§~‘N‘\\\\\\\\
0.50; *ff:Z:\
0.25;

0 100 200 300 400
Days since Training

—— Devign —— BGNN4VD
ReVeal —— TaintGraph

1.00;

0.75;

F1-Score
o
Ul
o

QEMU

=

0.25-
0.00-
0 100 200 300 400
Days since Training
—— Deepwukong SySEVR

—— VulDeepecker

19

=04 How do individual components of PAVUDI contribute to its capabilities?
Default

o _I-I
+CGIN

+TaintGraph

+Bounds
o _.-I
0.0 0.2 0.4 0.6 0.8 1.0

Relative Performance

Conclusion

O\
2\

O=| o
Sl

Conclusion

Patches are the atomic unit of modern software development
Existing vulnerability detectors are badly suited to patches
|dentified five previously undisclosed bugs

We introduce a patch-based vulnerabiliyt discovery (PAVUDI)
With a new interprocedural code representation
An explainable graph neural network

Our solution
has more than 50% increased detection performance
IS twice as robust against concept drift

Public Implementation: https://github.com/SAP-samples/security-research-taintgraphs

22

https://github.com/SAP-samples/security-research-taintgraphs

Thank you.

Corresponding Author:

Tom Ganz
tom.ganz@sap.com

GEFORDERT VOM

% Bundesministerium
fir Bildung

Intelligente Verfahren H .
und Forschung . zur Aufdeckung von S ecuril ty Resea I’Ch J:ff;;i:: .

Software - Hintertiiren Berlin

© 2023 SAP SE or an SAP affiliate company. All rights reserved. See Legal Notice on www.sap.com/legal-notice for use terms, disclaimers, disclosures, or restrictions related to SAP Materials for general audiences.

mailto:tom.ganz@sap.com

	Slide 1: PAVUDI: Patch-based vulnerability discovery using Machine Learning
	Slide 2: Introduction
	Slide 3: Vulnerability Discovery
	Slide 4: Learning-based Vulnerability Discovery
	Slide 5: Problem Setting
	Slide 6: Naive Solution
	Slide 7: Methodology
	Slide 8: Representation
	Slide 9: Causal Graph Neural Network
	Slide 10: Training dataset
	Slide 11: Experiments
	Slide 12: Research Questions
	Slide 13: Model Baselines
	Slide 14: Application Strategies
	Slide 15: RQ1 How do other strategies compare to PAVUDI?
	Slide 16: RQ1 How do other strategies compare to PAVUDI?
	Slide 17: RQ1 How do other strategies compare to PAVUDI?
	Slide 18: RQ2 How does the size of a commit affect the performance?
	Slide 19: RQ3 How does PAVUDI behave after training and deployment?
	Slide 20: RQ4 How do individual components of PAVUDI contribute to its capabilities?
	Slide 21: Conclusion
	Slide 22: Conclusion
	Slide 23

