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Introduction
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Vulnerability Discovery

▪ Classical Static Vulnerability Detection

– Manually crafted rules

– Often high false positive rate

– For example

▫ Flawfinder, CPPCheck

▫ Coverity, Clang Analyzer

▪ Definition of a Vulnerability Detector
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Learning-based Vulnerability Discovery

▪ Learning-based Static Vulnerability Detection

– Learns rules

– Requires dataset

– Adjustable threshold

– Representation learning

▪ Definition of a Learning-based Vulnerability Detector



5

Problem Setting

▪ Apply vulnerability detector on each patch (CI/CD)

▪ Problems with patches:

– Context-sensitive changes

– Non-coherent changes

– Evolution of Software

▪ Example: Heartbleed Bug

▪ Commit introducing the bug:

– Touches 12 Files

– 5 Header Files

– In 2 different packages
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Naive Solution

Use Existing Learning-based Discovery Methods:

▪ Feed them Inputs with Patch Context

▪ Problem: Feature Space explodes

Better Idea:

▪ Identify security relevant Paths

▪ Only consider those intersecting Changes



Methodology
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1. Obtain composite code graph

2. Insert call edges

3. Insert interprocedural data flow

4. Perform value-set analysis

5. Create security-relevant slices

Representation
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Causal Graph Neural Network

▪ Graph separated into Artifacts and causal Subgraph

▪ Separation learned by network

▪ Prediction only on causal Subgraph
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▪ Previous datasets contain only vulnerability-fixing patches

▪ We try to find vulnerability-introducing patches

▪ Very difficult to collect

▪ Instead: Find patches that touch vulnerable code

▪ From vulnerability-fixing patches, go back in time

▪ Patches on same methods are vulnerable

▪ Patches on other methods are assumed to be clean

Training dataset



Experiments
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▪ RQ1 How do other strategies compare to PAVUDI? 

▪ RQ2 How does the size of a commit affect the performance?

▪ RQ3 How does PAVUDI behave after training and deployment?

▪ RQ4 How do the individual components of PAVUDI contribute to the detection 

capability? 

Research Questions
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▪ Learning-based Graph Vulnerability Detectors

▪ DeepWuKong

▪ ReVeal

▪ Devign

▪ BGNN4VD

▪ Learning-based Token Vulnerability Detectors

▪ SySeVR

▪ VulDeePecker

▪ Heuristics-based Vulnerability Detector

▪ VUDDY

Model Baselines

Not Applicable to Patches!
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Apply Models to Fragments of the Patch and aggregate prediction score

▪ Max

▪ Mean

▪ Probability

▪ Isotonic

▪ Commit

Application Strategies
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RQ1 How do other strategies compare to PAVUDI?

FFmpeg QEMU
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RQ1 How do other strategies compare to PAVUDI?

FFmpeg QEMU
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RQ1 How do other strategies compare to PAVUDI?

FFmpeg QEMU
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RQ2 How does the size of a commit affect the performance?

FFmpeg QEMU
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RQ3 How does PAVUDI behave after training and deployment?

FFmpeg QEMU
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RQ4 How do individual components of PAVUDI contribute to its capabilities?



Conclusion

Not Attending: Martin Härterich, Konrad Rieck
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▪ Patches are the atomic unit of modern software development

▪ Existing vulnerability detectors are badly suited to patches

▪ Identified five previously undisclosed bugs

▪ We introduce a patch-based vulnerabiliyt discovery (PAVUDI)

▪ With a new interprocedural code representation

▪ An explainable graph neural network

▪ Our solution

▪ has more than 50% increased detection performance

▪ is twice as robust against concept drift

▪ Public Implementation: https://github.com/SAP-samples/security-research-taintgraphs

Conclusion

https://github.com/SAP-samples/security-research-taintgraphs
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