
Tom Ganz1, Erik Imgrund1, Martin Härterich1, Konrad Rieck²

AISec ’23

PAVUDI:
Patch-based vulnerability discovery 
using Machine Learning

1 SAP Security Research

² TU Berlin



Introduction



3

Vulnerability Discovery

▪ Classical Static Vulnerability Detection

– Manually crafted rules

– Often high false positive rate

– For example

▫ Flawfinder, CPPCheck

▫ Coverity, Clang Analyzer

▪ Definition of a Vulnerability Detector



4

Learning-based Vulnerability Discovery

▪ Learning-based Static Vulnerability Detection

– Learns rules

– Requires dataset

– Adjustable threshold

– Representation learning

▪ Definition of a Learning-based Vulnerability Detector



5

Problem Setting

▪ Apply vulnerability detector on each patch (CI/CD)

▪ Problems with patches:

– Context-sensitive changes

– Non-coherent changes

– Evolution of Software

▪ Example: Heartbleed Bug

▪ Commit introducing the bug:

– Touches 12 Files

– 5 Header Files

– In 2 different packages



6

Naive Solution

Use Existing Learning-based Discovery Methods:

▪ Feed them Inputs with Patch Context

▪ Problem: Feature Space explodes

Better Idea:

▪ Identify security relevant Paths

▪ Only consider those intersecting Changes



Methodology



8

1. Obtain composite code graph

2. Insert call edges

3. Insert interprocedural data flow

4. Perform value-set analysis

5. Create security-relevant slices

Representation



9

Causal Graph Neural Network

▪ Graph separated into Artifacts and causal Subgraph

▪ Separation learned by network

▪ Prediction only on causal Subgraph



10

▪ Previous datasets contain only vulnerability-fixing patches

▪ We try to find vulnerability-introducing patches

▪ Very difficult to collect

▪ Instead: Find patches that touch vulnerable code

▪ From vulnerability-fixing patches, go back in time

▪ Patches on same methods are vulnerable

▪ Patches on other methods are assumed to be clean

Training dataset



Experiments



12

▪ RQ1 How do other strategies compare to PAVUDI? 

▪ RQ2 How does the size of a commit affect the performance?

▪ RQ3 How does PAVUDI behave after training and deployment?

▪ RQ4 How do the individual components of PAVUDI contribute to the detection 

capability? 

Research Questions



13

▪ Learning-based Graph Vulnerability Detectors

▪ DeepWuKong

▪ ReVeal

▪ Devign

▪ BGNN4VD

▪ Learning-based Token Vulnerability Detectors

▪ SySeVR

▪ VulDeePecker

▪ Heuristics-based Vulnerability Detector

▪ VUDDY

Model Baselines

Not Applicable to Patches!



14

Apply Models to Fragments of the Patch and aggregate prediction score

▪ Max

▪ Mean

▪ Probability

▪ Isotonic

▪ Commit

Application Strategies



15

RQ1 How do other strategies compare to PAVUDI?

FFmpeg QEMU



16

RQ1 How do other strategies compare to PAVUDI?

FFmpeg QEMU



17

RQ1 How do other strategies compare to PAVUDI?

FFmpeg QEMU



18

RQ2 How does the size of a commit affect the performance?

FFmpeg QEMU



19

RQ3 How does PAVUDI behave after training and deployment?

FFmpeg QEMU



20

RQ4 How do individual components of PAVUDI contribute to its capabilities?



Conclusion

Not Attending: Martin Härterich, Konrad Rieck



22

▪ Patches are the atomic unit of modern software development

▪ Existing vulnerability detectors are badly suited to patches

▪ Identified five previously undisclosed bugs

▪ We introduce a patch-based vulnerabiliyt discovery (PAVUDI)

▪ With a new interprocedural code representation

▪ An explainable graph neural network

▪ Our solution

▪ has more than 50% increased detection performance

▪ is twice as robust against concept drift

▪ Public Implementation: https://github.com/SAP-samples/security-research-taintgraphs

Conclusion

https://github.com/SAP-samples/security-research-taintgraphs


Thank you.

Corresponding Author:

© 2023 SAP SE or an SAP affiliate company. All rights reserved. See Legal Notice on www.sap.com/legal-notice for use terms, disclaimers, disclosures, or restrictions related to SAP Materials for general audiences.

tom.ganz@sap.com

Tom Ganz

mailto:tom.ganz@sap.com

	Slide 1: PAVUDI: Patch-based vulnerability discovery using Machine Learning
	Slide 2: Introduction
	Slide 3: Vulnerability Discovery
	Slide 4: Learning-based Vulnerability Discovery
	Slide 5: Problem Setting
	Slide 6: Naive Solution
	Slide 7: Methodology
	Slide 8: Representation
	Slide 9: Causal Graph Neural Network
	Slide 10: Training dataset
	Slide 11: Experiments
	Slide 12: Research Questions
	Slide 13: Model Baselines
	Slide 14: Application Strategies
	Slide 15: RQ1 How do other strategies compare to PAVUDI?
	Slide 16: RQ1 How do other strategies compare to PAVUDI?
	Slide 17: RQ1 How do other strategies compare to PAVUDI?
	Slide 18: RQ2 How does the size of a commit affect the performance?
	Slide 19: RQ3 How does PAVUDI behave after training and deployment?
	Slide 20: RQ4 How do individual components of PAVUDI contribute to its capabilities?
	Slide 21: Conclusion
	Slide 22: Conclusion
	Slide 23

