
OAuth 2.0 Redirect URI
Validation Falls Short, Literally

Tommaso Innocenti, Matteo Golinelli, Kaan Onarlioglu,
 Ali Mirheidari, Bruno Crispo, and Engin Kirda

innocenti.t@northeastern.edu

Tommaso Innocenti
PhD candidate

innotommy.com

@Northeastern University
(Boston)

3

-XSS style
-HTML injection
-Open redirect
-OAuth token Leakage

Full victim’s account takeover

RFC redirect_uri
validation issue

What the heck is OAuth 2.0?

4

Introduction

Bob Service Provider Identity Provider

Visits Website

Login Request

User Authentication and Consent

Login Response

"Hi, Bob!"

Resource Owner

1) Client Application Access

2) Redirection to IdP Login 3) Authorization Request
[response_type=code, client_id,

state, redirect_uri]
5) Redirection to Client Callback

8) Access Token Response

9) Protected Resource Requests

10) Protected Resource Response

 [code, state]

Redeem
Process

6) Authorization Response

Parameter
Validation

 [grant_type=authorization_code, client_id, client_secret, code, redirect_uri]

User Agent
(Web Browser)

 [access_token]

Client

Data Access

4) User Authentication

7) Access Token Request

Identity
Provider

Authorization
Process

 [access_token]

 [Data]

Access Token
Validation

State
Validation

Parameter
Validation

5

Code grant flow

6

RFC6749 & RFC3986

redirect_uri validation in RFC:

• RFC 6749 Section 3.1.2.3
 The authorization server MUST compare the two URIs using simple string

comparison as defined in RFC 3986 Section 6.2.1.
• RFC 3986 Section 6.2.1
 Testing strings for equality is normally based on pair comparison of the characters

that make up the strings, starting from the first and proceeding until both strings
are exhausted, and all characters are found to be equal, until a pair of characters
compares unequal, or until one of the strings is exhausted before the other.

What is Path Confusion?

Bob Service Provider Identity Provider

Visits Website

Login Request

User Authentication and Consent

Login Response

7

Path Confusion

PathConfusion:
/..%252FFAKEPATH
/%252e%252e%252FFAKEPATH

8

Methodology

OAuth 2.0 Player

facebook.com/LOGINimdb.com/LOGIN

Sign in
Username

Analysis

Results

Sites &

OAuth 2.0

Triggers

IdP

Credentials

Setup Data AnalysisData Collection

IdP

Detection

Login page

detection

Tranco

sites list

Network

Dump

Login

Results

Proxy

Logs

Screen

Captures

Path

Confusion

Payloads

!"#$%&&'IMDb
OAuth 2.0 Flow

Analysis

9

Results

6/16 IdPs vulnerable to Path Confusion
(Facebook, Microsoft, GitHub, Atlassian, NAVER, and VK)

10

Resource Owner

1) Client Application Access

2) Redirection to IdP Login 3) Authorization Request
[response_type=code, client_id,

state, redirect_uri]
5) Redirection to Client Callback

8) Access Token Response

9) Protected Resource Requests

10) Protected Resource Response

 [code, state]

Redeem
Process

6) Authorization Response

Parameter
Validation

 [grant_type=authorization_code, client_id, client_secret, code, redirect_uri]

User Agent
(Web Browser)

 [access_token]

Client

Data Access

4) User Authentication

7) Access Token Request

Identity
Provider

Authorization
Process

 [access_token]

 [Data]

Access Token
Validation

State
Validation

Parameter
Validation

Are we doomed?

12

-XSS style
-HTML injection
-Open redirect
-OAuth token Leakage

Full victim’s account takeover

• Path Confusion

• Redirect_uri validation in
redeem step

13

Attack scenario

Attack checklist:
1)Vulnerable redirect_uri parsing in Authorization step

• Path Confusion

2)Vulnerable Client

3)Vulnerable redirect_uri check in redeem step

https://nid.naver.com/oauth2.0/authorize?client_id=<REDACTED>&response_type=c
ode&redirect_uri=https%3A%2F%2F<REDACTED>%2Fopenapi%2Fsocial%2Flogin.php
/%252e%252e/%252e%252e/%252e%252e/redirect.php%3Ftarget%3Dhttps%3a%2F
%2F<attacker-domain>%2F&state=random-state

Attack URL:

Full Victim’s account takeover is possible!!!

à openbugbounty.com

à6/16 IdPs

à 2/16 IdPs

14

Responsible Disclosure

All IdPs involved in the study which has been found vulnerable has
been contacted.

• Microsoft acknowledge our report and fixed their validation procedure.

Reported our findings to the OAuth working group, which included
our recommendation in the BCP.

• GitHub is tracking internally the problem and is actively working on a fix
• We are actively working with Naver to help fixing the issue

OpenID foundation modified the conformance test suite to include
our attack

15

Takeaways

Current “best practice” is not good enough

Recommendations:

1) redirect_uri validation should use strict string equality check

2) IdPs server should never sanitize redirect_uri to avoid
introducing any discrepancy, instead should validate them

16

One more thing

• Path confusion
• OAuth Parameter Pollution à10/16 IdPs vulnerable

17

Q&A

Questions?

18

RFC6749 & RFC3986

redirect_uri parameter in RFC:

• RFC 6749 Section 3.1
 The endpoint URI MAY include an "application/x-www-form-urlencoded" formatted

(per Appendix B) query component (RFC 3986 Section 3.4), which MUST be
retained when adding additional query parameters.

• RFC 6749 Section 10.14
 A code injection attack occurs when an input or otherwise external variable is used

by an application unsanitized and causes modification to the application logic. This
may allow an attacker to access the application device or its data, cause a denial of
service, or introduce a wide range of malicious side effects. The authorization
server and Client MUST sanitize (and validate when possible) any value received–in
particular, the value of the "state" and "redirect_uri” parameters.

Lack on input validation directive or attack prevention

redirect_uri (code + code)

redirect_uri (code) redirect_uri (code)

redirect_uri (code + code) (code), redirect_uri (code)

Wrong redirect_uri
validation

Attack start
Client Attacker IdPVictim

(Web Browser)

redirect_uri (code)

redirect_uri ()
≠

Victim authentication2.1.

3.4.
 IdP status

https://idp.example.com/oauth/authorize?response_type=code&client_id
=<validID>&state=<value>&redirect_uri=https://Client.example.com/oauth/
callback

• Attack URL:

%3Fcode%3D<value>

19

OAuth Parameter Pollution

Victim’s authenticated as the attacker!!

20

One more recommendation

• Path confusion

3) IdPs should validate redirect_uri and block Authorization
request where Code or state parameters are included in the
redirect_uri as parameter.

Recommendations:

• OAuth Parameter Pollution à10/16 IdPs vulnerable

21

Q&A

Questions?

