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Detection of Anomalies in Electric 
Vehicle Charging Sessions



• Electric Vehicles (EVs)

• Growing EV Adoption

• Charged at Charge Points (CPs)

➢ Cyber-physical threats
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• Electric Vehicles (EVs)

• Growing EV Adoption

• Charged at Charge Points (CPs)

➢ Cyber-physical threats

• EV Charging (high load on grid)

• Load balancing

• Vehicle to Grid (V2G) power flow
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Introduction

Charging
Source: 
https://www.forbes.com/sites/oliverwyman/2019/05/
15/as-more-evs-hit-the-road-blackouts-become-
likely/
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Motivation

Source: 
https://jsis.washington.edu/news/cyberattack-
critical-infrastructure-russia-ukrainian-power-grid-
attacks/
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Motivation

Source: 
https://jsis.washington.edu/news/cyberattack-
critical-infrastructure-russia-ukrainian-power-grid-
attacks/

Source: 
https://www.wired.com/2015/07/j
eep-hack-chrysler-recalls-1-4m-
vehicles-bug-fix/

Source: 
https://www.pentestpartners.com/securit
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for-hackers/
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System Model
Overview

CP CPOEV

ISO 15118 Open Charge Point Protocol 
(OCPP)

Communication Communication

Electric 
Vehicle

Charge 
Point

Charge 
Point 

Operator



02.12.20237

System Model
CPO Charge Profiles

CP CPOEV

1. Set Charging Profile

ISO 15118 Open Charge Point Protocol 
(OCPP)
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System Model
Charge Parameter Negotiation 

CP CPOEV

1. Set Charging Profile

2. Charge Parameter Discovery

3. Notify EV Charging Needs 
/Schedule

ISO 15118 Open Charge Point Protocol 
(OCPP)
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System Model
Charge Session

CP CPOEV 6. Transaction Event

1. Set Charging Profile

2. Charge Parameter Discovery

4. Power Delivery

5. Status/Metering

3. Notify EV Charging Needs 
/Schedule

ISO 15118 Open Charge Point Protocol 
(OCPP)
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Adversary Model

CP CPOEV 6. Transaction Event

1. Set Charging Profile

2. Charge Parameter Discovery

4. Power Delivery

5. Status/Metering

3. Notify EV Charging Needs 
/Schedule

• Manipulation of Demand • False Data Injection
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Adversary Model

CP CPOEV 6. Transaction Event

1. Set Charging Profile

2. Charge Parameter Discovery

4. Power Delivery

5. Status/Metering

3. Notify EV Charging Needs 
/Schedule

• Manipulation of Demand

➢ Higher/lower charging speeds

• EV/CP: current or voltage limits

• CP: Charge profiles, tariffs

• EV: Charge profile/tariff selection

• False Data Injection
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Adversary Model

CP CPOEV 6. Transaction Event

1. Set Charging Profile

2. Charge Parameter Discovery

4. Power Delivery

5. Status/Metering

3. Notify EV Charging Needs 
/Schedule

• Manipulation of Demand

➢ Higher/lower charging speeds

• EV/CP: current or voltage limits

• CP: Charge profiles, tariffs

• EV: Charge profile/tariff selection

• False Data Injection

➢ Inaccurate State Estimation

• EV/CP: Energy amount + departure 
time, planned consumption over time,         
charge profile selection

• CP: Meter values
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IDS for EV Charge Session Anomalies

• Hybrid model for anomaly detection:

• Semi-supervised regression model

• Detection model

• Supervised classification

• Semi-supervised novelty detection



02.12.202314

IDS for EV Charge Session Anomalies
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• Trained on data w/o attacks

• Generates charge speed predictions
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• Semi-supervised novelty detection
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IDS for EV Charge Session Anomalies

• Hybrid model for anomaly detection:

• Semi-supervised regression model

• Trained on data w/o attacks

• Generates charge speed predictions

• Detection model

• Supervised classification

• Trained on data w/ simulated attacks

➢ Lower false positives

• Semi-supervised novelty detection

• Trained on data w/o attacks

➢ Better generalization
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IDS for EV Charge Session Anomalies

• Hybrid model for anomaly detection:

• Semi-supervised regression model

• Trained on data w/o attacks

• Generates charge speed predictions

• Detection model

• Supervised classification

• Trained on data w/ simulated attacks

➢ Lower false positives

• Semi-supervised novelty detection

• Trained on data w/o attacks

➢ Better generalization

• Ensemble of classification and      
novelty detection

➢ Combine advantages
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IDS for EV Charge Session Anomalies

• Offline Training

• Based on historic charge session data

• Feature selection

• High-level features

• Charging behavior

• Consumption predictions

• Simulated attacks (for classification model)

• Random anomalies in charging 
behavior
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IDS for EV Charge Session Anomalies

• Anomaly Detection During Live Operation

• Process

• Generate the consumption forecasts

• Generate the relevant detection features

• Classify session (normal/anomaly)
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IDS for EV Charge Session Anomalies

• Anomaly Detection During Live Operation

• Process

• Generate the consumption forecasts

• Generate the relevant detection features

• Classify session (normal/anomaly)

• Ensemble detection combining:

• Classification-based detection
+ High TPR on known/trained-on attacks

− Lower TPR for previously unseen attacks

• Novelty-based detection
+ Generalize better to unseen attacks

− Higher FPR

• Weighted voting tuned towards low FPR

TPR := True Positive Rate
FPR := False Positive Rate



• 3 Adaptive Charging Network (ACN) data sets

• ACN Caltech (54 semi-public CPs)

• ACN JPL (52 workplace CPs)

• ACN Office  (8 workplace CPs)

• ElaadNL data set

• 850 public CPs

➢ Detailed charging data during each session
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Evaluation – Data Sets



➢ 11 months of training/validation data
• Normal traffic without attacks

• Simulated attacks for classifier training

➢ Several 1 month testing data sets

• Data/code provided online: https://code.fbi.h-
da.de/seacop/ev-charging-ids-data-sets
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Evaluation – Attack Data Sets

https://code.fbi.h-da.de/seacop/ev-charging-ids-data-sets
https://code.fbi.h-da.de/seacop/ev-charging-ids-data-sets


➢ 11 months of training/validation data
• Normal traffic without attacks

• Simulated attacks for classifier training

➢ Several 1 month testing data sets
• Manipulation of Demand/False Data Injection

• Different magnitudes and compromise levels

• Attack vectors:

• Synchronized, prepared increase, slow change

• Fabricated/manipulated data

• Varying time spans and repetitions

• Data/code provided online: https://code.fbi.h-
da.de/seacop/ev-charging-ids-data-sets
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Evaluation – Attack Data Sets

https://code.fbi.h-da.de/seacop/ev-charging-ids-data-sets
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• Based on sklearn implementations

• Evaluation of fitting algorithms

• Grid-search-based hyperparameter 
tuning

• 5-fold cross validation over training 
data

➢MLPClassifier and LocalOutlierFactor
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Evaluation – Detection



• Based on sklearn implementations

• Evaluation of fitting algorithms

• Grid-search-based hyperparameter 
tuning

• 5-fold cross validation over training 
data

➢MLPClassifier and LocalOutlierFactor

• Evaluation of regression-base features

• Based on RandomForestRegressor

• With anomalies during a session

• 5-fold cross validation over training 
data
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Evaluation – Detection



• Performance on previously unseen data

• Random simulated anomalies (same as 
training)

• Attacks targeting grid stability (not in 
training)
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Evaluation – Details



• Performance on previously unseen data

• Random simulated anomalies (same as 
training)

• Attacks targeting grid stability (not in 
training)

• Evaluation of ensemble

• Based on the respective prediction 
confidence

• Optimized towards different maximum FPR

➢Classification and novelty detection can 
complement each other
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Evaluation – Details



• EV charging poses cyber-physical threats

• E.g., attacks on power grid stability

• Detection of Anomalies in Electric Vehicle 
Charging Sessions

• Hybrid of regression and anomaly detection 

• Ensemble-based detection

• Classification model

• Novelty detection model

• Evaluation

• Shows good design choices and thresholds

• Good performance of the IDS concept
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Summary
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Dustin Kern

dustin.kern@h-da.de

Thank you for your attention. Questions?
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