

Secure MLaaS with Temper: Trusted and Efficient Model Partitioning and Enclave Reuse

Fabing Li¹², Xiang Li³, Mingyu Gao²³⁴

¹ Xi'an Jiaotong University

² Institute for Interdisciplinary Information Core Technology

³ Tsinghua University

⁴ Shanghai Artificial Intelligence Lab Shanghai

Background

DNN is widely-used in many applications

Face recognition

Autonomous driving

Voice recognition

Smart Assistant

- Machine Learning as a Service (MLaaS) becomes popular
 - Accessibility: simplified and user-friendly interfaces
 - Rapid Prototyping and Development
 - Scalability, Flexibility and Reduced Costs
 - Integration and Compatibility with Existing Workflows

Security Issues

Data Breaches

Data Privacy

Cyber-attacks Adversarial Attacks

Secure Runtime

Untrusted Service Provider Malicious Tenants

Data Isolation

Where the solve these issues?

Regulatory Compliance

> gdpr Hipaa

Data Visibility

Solutions

- Trusted Execution Environment (TEE) oriented approaches
- Cryptography oriented approaches

APPROACH	SECURITY LEVEL	EFFICIENCY	LIMITATIONS
TEE	System	Relatively High	Hardware Side-channels
Cryptography HE MPC etc. 	Cryptographic	Low	Accuracy Computation Communication

We focus on TEE-based MLaaS !

Intel SGX

- Enclave: a hardware-protected memory region
- Provide attestation for code and data inside the enclave
- Obstruct OS-level and physical attackers
- High accessibility: Azure, Alibaba Cloud, etc.

Hardware

Secure MLaaS

Integrate runtime with Intel SGX SDK

Start and load the model weights into the enclave

Grify the runtime by attestation after initialization

Receive user requests and make inferences

Goals

Not sacrificing the security
 Unchanged accuracy
 Comparable efficiency and scalability

Challenges

(Why is TEE-based MLaaS slow?

Performance breakdown of baseline secure MLaaS

- Enclave initialization
 - Attestation
- Model Loading
 - Load model weights
- <u>Secure Paging</u>
 - Performance degradation due to limited EPC size

Approaches

P Enclave reuse for enclave initialization and model loading

Model partitioning for secure paging

- Long running enclave
 - Leader-Worker topology
 - Preloaded model weights

No Model Loading and Scalability

Pow to solve the security issues?
e.g. attestation for enclaves, data interference, data residual

- Traditional attestation
 - One report for one user
 - One report for one enclave

Prepart validation happens without the enclave

Can we verify a pre-generated report?

- Traditional attestation
 - One report for one user
 - One report for one enclave

Prepart validation happens without the enclave

^(S) Can we verify a pre-generated report?

- Traditional attestation
 - One report for one user
 - One report for one enclave

Prepart validation happens without the enclave

^(C) Can we verify a pre-generated report?

- Report reuse
 - One report for all users
 - One report for all enclaves

No more enclave initialization

- Report reuse
 - One report for all users
 - One report for all enclaves

No more enclave initialization

- Report reuse
 - One report for all users
 - One report for all enclaves

(a) No more enclave initialization

• NN models are stateless

Security

- Models are read-only for inferences
- Data streams flow with deterministic sizes and at fixed time

Model Partitioning

How to get the optimal runtime efficiency?

Alleviate the secure paging

Partition the model to fit in the limited EPC size

Acceptable communication cost

Replace model loading with inter-enclave communication

Model Partitioning

Optimization Goals

Is it worth to have some secure paging cost to avoid large communication overheads?

$$\min\left\{n \times \max_{i} \{t_{\text{comp},i}, t_{\text{comm},i}\}\right\} \quad \leftarrow \text{high-throughput}$$
$$\min\left\{\sum_{i} t_{\text{comp},i} + t_{\text{comm},i}\right\} \quad \leftarrow \text{low-latency}$$

t_{comp}: Computation costs <-- Memory consumption *t_{comm}*: Communication costs <-- Data Size

Basic units

- Fusing small operators
- Split large operators

Sind the best partition, and do it faster

Model Partitioning

Latency Estimation Model

Get all possible costs

- Computation cost
 - Memory ballooning for latency with secure paging
 - Normal execution for latency without secure paging
- Communication cost
- Solving Optimized Partitioning

Solution Not so slow, compared to latency estimation

- Partition (10 to 100) units to (1 to n) enclaves
- Exhaustive search

Evaluation

Implementation

Intel SGX v2.9

Fortanix Rust enclave development platform (EDP) TVM v0.7 for ML models

Platform

4 servers Intel Core i7-9700 CPU

1 Gbps Ethernet

Experiment Setup

ImageNet

MobileNetV1, ResNet18/50/152, VGG19, InceptionV3, and DenseNet201

Baselines: runtime optimization and careful memory management

• Comparison when optimizing for low-latency

10 × speedup against TenosrSCONE
 4.9 × speedup against Myelin
 2.2 × speedup against Lasagna
 2.1 × slowdown for the untrusted

Throughput

- Throughput using batch sizes 1, 4, and 16
 - 3 1.8 ×, 2.1 ×, and 1.2 × higher throughput over Lasagna with batch size 1, 4, and 16
 - Increasing batch sizes will not always result in throughput improvements, because larger batch sizes incur more secure paging

Attestation and Communication

Attestation (msec)	Server	User	Total
Standard	462.43	111.25	573.68
TEMPER	30.48	112.97	143.45

Report generation inside the enclave takes close to half a second
 4 × faster on overall performance

Model	TEMPER(img/sec/server)	DNN-Partition (img/sec/server)
MobileNetV1	41.57	41.53
ResNet18	23.96	15.37
ResNet50	9.41	2.47
ResNet152	1.89	2.67
VGG19	0.60	0.39
InceptionV3	4.39	1.06
DenseNet201	4.62	2.74

* DNN-Partition assumes a heterogeneous system with many accelerators and CPUs

Partitioning Strategies

(*) The effect of appropriate secure paging instead of strict partition size

 $\ensuremath{\textcircled{}^{\ensuremath{\wp}}}$ It is necessary to allow secure paging sometimes

Conclusion

In-depth analysis on TEE-based secure MLaaS designs and identify three key performance inefficiencies: enclave initialization, model loading, and limited trusted memory space.

Propose a trusted and efficient MLaaS system, TEMPER, improving performance while not sacrificing security guarantees or inference accuracy.

1 Outperform the SOTA baseline by over 2 \times in terms of latency and throughput

W Questions?