

Protecting Your Voice from Speech Synthesis Attacks

Zihao Liu, Yan Zhang, Chenglin Miao Iowa State University

Speech Synthesis

- Speech synthesis aims to generate synthetic speech in a voice of a target speaker.
- Applications of speech synthesis
 - Help people who have lost their voice
 - Language translation
 - Increase human trust to healthcare robots

Speech Synthesis

• Voice conversion (VC)

 Convert a source speaker's voice to sound as if spoken by the target speaker while keeping linguistic contents unchanged.

Text-to-speech (TTS)

 Convert arbitrary texts and the target utterance that provides voice characteristics as inputs to synthesize a speech.

Speech Synthesis Attack

- **Speech synthesis attack:** An attacker aims to *mimic the voice of a target speaker* and transform his chosen text or voice samples into the same content spoken by the target.
 - Carrying out a heist
 - Fool voice-based authentication systems built in devices
 - Fool human beings for financial or other malicious purposes

WSJ PRO

Fraudsters Used AI to Mimic CEO's Voice in Unusual Cybercrime Case

Scams using artificial intelligence are a new challenge for companies

Forbes
FORBES > INNOVATION > CYBERSECURITY
EDITORS' PICK
Fraudsters Cloned Company
Director's Voice In \$35 Million
Heist, Police Find

Defense Schemes

- Fake speech detection: By discovering artifacts of fake speeches or identifying unique evidence of real speeches
 - Specific assumptions and recording conditions
 - Severe consequences have already occurred
- Fake speech prevention: By adding carefully-designed perturbations to the target speaker's speeches before the attacker obtains them
 - Large perturbations
 - White-box setting
 - Low efficiency

Our Goal

- Develop a fake speech **prevention** scheme.
- The target speaker can use the scheme to process his or her speeches before publishing them.
- The attacker cannot generate desirable synthetic speeches.
- The scheme has little impact on the sound of the target speaker's voice.

Problem Setting

- Metrics for defense goal
 - Quality change of raw speech

 $\Delta Q_d(\mathbf{x}) = 1 - S(E_s(\mathbf{x}_d), E_s(\mathbf{x}))$

The **similarity score** between the speech embeddings **before and after defense**

- Quality change of synthetic speech $\Delta Q_I(\mathbf{x}) = S(E_s(\mathcal{W}(\mathbf{x})), e_s) - S(E_s(\mathcal{W}(\mathbf{x}_d)), e_s)$ The generated synthetic speech

Overall defense goal

Defense via Frequency Modification

- Three modification methods
 - Zero Mask
 - $\mathcal{M}_Z(\mathbf{x}, \mathbb{F}) = \{\mathbf{x} | a_f^t = 0, \forall f \in \mathbb{F} \text{ and } \forall t \in [0, T]\}$
 - Adaptive Noise Mask (AN-Mask) $\mathcal{M}_{AN}(\mathbf{x}, \mathbb{F}) = \{\mathbf{x} | a_f^t = a_f^t + C(\eta(\cdot)), \forall f \in \mathbb{F} \text{ and } \forall t \in [0, T]\}$
 - Gaussian Blur Mask (GB-Mask)

 $\mathcal{M}_{GB}(\boldsymbol{x}, \mathbb{F}) = \{\boldsymbol{x} | a_f^t = \phi(a_f^t, G), \forall f \in \mathbb{F} \text{ and } \forall t \in [0, T] \}$

- Frequency partition
 - Split Mel Spectrogram into many blocks
 - Two continuous frequency blocks are called frequency window

Optimal Defense Strategy

• Find the best frequency-modification method pairs

$$\mathcal{D} = \{(b_i, \mathcal{M}_i)\}_{i=1}^{P} \quad \text{s.t. } \Delta Q_d(\mathbf{x}) < \tau_d,$$

Challenges

- The defender does not know the model details (black-box setting)
- The frequency-modification pair selection is not continuous process
- Solution
 - Iteratively search with our defined metric, *frequency sensitivity:*

$$s_j^t = \frac{\Delta Q_I^t(\mathbf{x}) - \Delta Q_I^{t-1}(\mathbf{x})}{\Delta Q_d^t(\mathbf{x}) - \Delta Q_d^{t-1}(\mathbf{x})} \xrightarrow{\rightarrow} \text{The larger the better}$$

The smaller the better

An Example of Iteration Search

Iteration 0: Initialize $\Delta Q_I^0(x)$ and $\Delta Q_d^0(x)$ (Both are set to 0)

Iteration 2: repeat the process of Iteration 1

Iteration 1: (1) Iterate all frequency windows with different modification methods; (2) Select the largest sensitivity among all combinations; (3) perform the corresponding modification

Iteration 3: The sample distortion is beyond the threshold; the search terminates.

Speaker-level Defense

- In some cases, a speaker needs to send instant audio messages to others.
- It is necessary to derive a defense strategy that is **general enough to be directly applied to any speech of a speaker**.

• Experimental setting

- Dataset: VCTK
- Speech synthesis models: Chou's^[1], AutoVC^[2], SV2TTS^[3]
- **Baselines:** Raw (without defense); Attack-VC^[4] (a fake speech prevention method)
- Speaker recognition (SR) systems: Resembylzer, Microsoft Azure, Amazon Alexa, WeChat
- Metrics
 - *Attack success rate (ASR):* the percentage of synthetic speeches that successfully fool a specific SR system (the lower the better)
 - *Accept rate (ACR):* the percentage of the modified speeches that are successfully recognized by the SR system (the higher the better)

^[1] Chou, et al. "One-shot voice conversion by separating speaker and content representations with instance normalization." arXiv preprint arXiv:1904.05742 (2019).

^[2] Kaizhi Qian, et al. "Autovc: Zero-shot voice style transfer with only autoencoder loss." In International Conference on Machine Learning. PMLR, 5210–5219.

^[3] Ye Jia, et al. "Transfer learning from speaker verification to multispeaker text-to-speech synthesis." Advances in Neural Information Processing Systems 31 (2018).

^[4] Chien-yu Huang, et al. "Defending your voice: Adversarial attack on voice conversion." In 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 552–559.

• Attack success rate (ASR) on Resemblyzer (%)

	Chou's			AutoVC			SV2TTS	
	Attack-VC	SampleMask	SpeakerMask	Attack-VC	SampleMask	SpeakerMask	SampleMask	SpeakerMask
$ au_d = 0.06$	69.7	18.2	38.8	34.3	19.1	24.8	19.4	49.0
$\tau_d = 0.12$	46.3	9.2	17.1	29.3	13.0	15.1	8.3	29.9
$ au_d = 0.18$	30.3	0.9	9.4	17.2	6.5	10.9	3.5	13.5

Raw: Chou's (84.1%), AutoVC (52.4%), and SV2TTS (57.1%)

• Attack success rate (ASR) on Microsoft Azure

Acceptance Rate (ACR) of modified speeches (%)

	Chou's	AutoVC	SV2TTS
Resemblyzer	100	100	100
Azure	89.9	84.7	90.1

• Attack success rate (ASR) on Amazon Alexa (%)

Commands	Chou's		AutoVC			SV2TTS		
	Raw	Attack-VC	SpeakerMask	Raw	Attack-VC	SpeakerMask	Raw	SpeakerMask
Hey Alexa add an event to my calendar for tomorrow at 5.	50.0	16.7	8.3	16.7	0.0	0.0	83.3	75.0
Hey Alexa check my email	41.7	25.0	0.0	25.0	33.3	0.0	41.7	41.7
Alexa say who is talking with you now		33.3	16.7	16.7	16.7	0.0	50.0	33.3
Alexa tell me what is on my calendar		75.0	16.7	33.3	41.7	8.3	91.7	66.7
Tell me what is on my calendar for this week	58.3	66.7	8.3	25.0	41.7	0.0	75.0	58.3
Alexa make an appointment with my doctor		41.7	8.3	33.3	25.0	0.0	83.3	50.0
Hey Alexa make a donation to the American Cancer Institute		0.0	0.0	0.0	8.3	0.0	58.3	41.7
< Average across the above 7 commands >		36.9	8.3	21.4	23.8	1.2	69.0	52.4

- Attack success rate (ASR) on WeChat
 - Test on 12 English speakers (7 males/5 females)
 - The ASR is decreased from 41.6% to 8.3% for SV2TTS

- User study (80 participants from Amazon Mechanical Turk)
 - Each participant is asked to listen to some audio pairs and answer the question: Are the two audio samples from the same speaker?
 - Real A/Defense A (one real speech sample and its corresponding defense sample)
 - Real A/Fake A (one real speech sample and its corresponding synthetic speech sample)

		Chou's		AutoVC		SV2TTS
		Attack-VC	SpeakerMask	Attack-VC	SpeakerMask	SpeakerMask
Real A/Defense A	Yes (%)	70.9	71.5	70.4	69.9	73.7
	Unsure (%)	13.1	12.8	16.6	13.5	15.4
	No (%)	16.0	15.7	13.0	16.6	10.9

Conclusions

- We study how to protect a speaker's voice from speech synthesis attacks.
- We propose a novel defense scheme that can significantly degrade the performance of existing speech synthesis models.
- The proposed defense scheme has little impact on the quality of speeches, and the modified speeches can still be used for their normal purposes.
- The desirable performance of the proposed defense schemes is verified on several real-world speaker recognition systems and a user study on a public crowdsourcing platform.

