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• Crypto in the news:
• June 2022: Binance enabled $2.35billion in laundering.
• 2023: $500m in ransomware payments.
• Tornado cash: $1billion laundered crypto.

• Increasing regulation on transparency and trading.

• Research focuses on GNN variations and 
enhancements rather than preprocessing and 
topology imbalance.



Contributions
• Identify label and topology imbalance issues impacting GNN 

models in identifying illicit activity in bitcoin.

• Propose two novel model-agnostic methods for graph structure 
learning that address the imbalances and discover fraudulent 
nodes in bitcoin transaction graphs.

• Evaluate methods on a highly imbalanced and temporal Elliptic 
Bitcoin dataset to show performance improvement.

• Compare methods against other imbalanced node classification
techniques on DBLP citation network to show effectiveness.



Cryptocurrency
• Computational method of transferring 
digital value between users.

• Does not require financial intermediary.

• Introduced blockchain technology.

• Two main models of development:
• UTxO.

• Account-based.

• Basis for digital currency.
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UTxO: Unique method of transferring 
value without a financial intermediary.

An output represents Bitcoin that can be 
spent by a user who has the private key.



Bitcoin and Illicit Activity

Money Laundering

Dark Market Purchases

Terrorist Financing

Organized Crime 
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State bodies 
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How to launder?

InputA

InputB

InputC

OutputA

OutputB

OutputC
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CoinJoin
Multisignature transaction 
made available through 

privacy wallets and 
services.

Mixing
Obfuscates origin of user’s 
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Heuristics

Denonymise the Bitcoin network

Group inputs into clusters

Heavy assumptions

Broken



Heuristics

Multi-Input/Co-Spend
Clusters the inputs in a 

transaction and links them 
to a controlling entity 

Input 
0.33 
BTC

Bob 
0.75 
BTC

Output 
0.25 
BTC

Alice & 2 
Inputs -> 

Bob 
0.75BTC

Input 
0.33 
BTC

Alice 
0.33 
BTC

Alice-> 
Bob 

0.75BTC



Heuristics
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Deep Learning in Illicit Activity 
Identification
Heuristics have high avg. error rate (63.46% for co-spend, 
92.66% for change address)1.

Complementing heuristics with ML2,3.

Graph Neural Networks show promise in classification and 
deanonymisation tasks4,5.

Bitcoin is naturally a graph.



Bitcoin Graph – Transaction Level
Classic Edges – Transaction flow
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Node 1

Node 4Node 2

Node 5

Node 3

= Illicit Addresses

= Licit Addresses

• How do we capture the relationship 
between illicit nodes?

• Can we restructure the graph based on 
underlying properties and similarity 
between nodes?

• Does this improve model’s performance?

Illicit/Licit Labels



Bitcoin Graph Topology

• Topology imbalance in Bitcoin is a major issue in illicit activity 
detection.

• Three key aspects of graph class-imbalance are unique against 
classical class-imbalanced tasks in ML.

1. Graph data is unique and non-Euclidean. Traditional methods may 
struggle to handle complex connectivity patterns in graph data.

2. Mishandling the graph relationships through under and oversampling 
can disrupt the rich relational information.

3. Specialized techniques are needed to preserve and leverage the 
information.



Edges based on Affinity (EA)
Edges created based on node connectivity through 

Personalised Page Rank (PPR). Edge is created if connectivity 
score reaches parameter threshold.

New Edge

Original Edge
Illicit Node
Licit Node

Target Illicit Node

Measure 
connectivity 

influence of illicit 
nodes using 

PPR.

Establish new 
edges if 

connectivity over 
threshold.

Original Graph Restructured Graph



Edges based on Affinity (EA)
To restructure a graph using EA:

• Using temporal graph, G, and 
create subgraph, GL, with 
labelled illicit nodes (VL).

• Pick random nodes, ui and VL, from G and GL respectively. 

• Apply function beta (PPR) to 
measure connectivity influence 
between VL and ui.

• Select all nodes, ui, with the 
highest affinity to VL and select 
all the edges between them to 
create new adjacency matrix 
A*.



Edges based on Node Features (ENF)
Edges created based on node feature similarity. MLP calculates 

embeddings and sigmoid function used to find probabilistic cut-off.

Original Edge
Illicit Node
Licit Node

New Edge
Old Edge

Original Graph Restructured Graph
Node features 
similarity is 

compared using 
MLP.

A sigmoid function 
is used to decide 

whether an edge is 
created or not.

Low similarity 
scores are 

considered noisy 
and removed.



Edges based on Node Features (ENF)
• For each temporal graph, G, calculate embeddings, Z, for each node, u, against 

random node, v.

𝑍 𝑢 = 	𝜃 𝑋 𝑢  

𝜋!,# = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑍 𝑢 𝑍 𝑣 $

Where 𝜃 is a two-layer perception network, 𝜋!,# denotes the strength of similarity 
between node u and v.
 
• Create probability of forming edges using learning attention weights 𝜋!,# in a 

parameterized matrix Puv = {𝜋!,#}

𝑝!# =
exp 𝜋!# 	
∑! exp 𝜋!#
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Graph Neural Networks (GNNs)
• Relationship between data points (edges)

• Requires nodes, edges, and node features.

• Different architectures focus on different aggregation methods.

• Creates embeddings representative of nodes and their neighbourhood.

GNN
Graph Convolutional Network (GCN)6

Graph Attention Transformer (GAT)7

GraphSAGE8

Generalised PageRank (GPRGNN)9

Explore-to-Extrapolate Risk Minimization (EERM)10



Experiment
H: Can we improve GNN performance of an 
imbalanced node classification task using 
proposed EA and ENF methods?

1. Elliptic Bitcoin temporal graph dataset:
• Train 5 GNNs using new structured graphs from EA 

and ENF.
• Compare against baseline random forest.

2. Compare node imbalance techniques against 
proposed EA and ENF methods on DBLP 
citation network.
• Demonstrate model agnostic and multi-domain 

applicability of methods.



Bitcoin Dataset
• Largest labelled dataset for 

cryptocurrency illicit activity.
• 203,769 nodes
• 49 time-steps 
• 166 features 
• 21% labelled licit 
• 2% labelled illicit

• Labelled through heuristics-
based reasoning.

• Popularly researched.
• We train on the first 7-11 

timesteps
• We test on time steps 34-49 

timesteps.
• Elliptic++ (2023)



Results – Elliptic 
Dataset
F1-score is metric of evaluation.

GEA = Graph created from EA
GENF = Graph created from EA
G = Original Graph

Even in highly imbalanced temporal 
steps 43-49, GNNs identify illicit 
transactions.

ENF shown to be the most impactful 
method of graph restructuring.

Graph GNN-
Arch/Model

Timestep 34-
38 Timestep 39-42 Timestep 43-46 Timestep 47-49

None RF 85.49 78.67 0.00 0.00

GEA

GCN

51.33 5𝟐. 𝟑𝟑 49.16 44.07

GENF 47.59 48.38 4𝟗. 𝟔𝟐 46.61

G 48.86 47.79 48.69 4𝟔. 𝟔𝟓

GEA

GAT

56.75 53.76 48.16 46.432

GENF 6𝟖. 𝟓𝟖 5𝟖. 𝟏𝟗 47.32 5𝟐. 𝟗𝟕

G 50.39 50.26 4𝟗. 𝟎𝟏 46.80

GEA

Graph-
SAGE

61.54 59.25 5𝟒. 𝟏𝟓 46.55

GENF 6𝟓. 𝟖𝟔 6𝟐. 𝟕𝟑 49.58 4𝟔. 𝟗𝟕

G 56.06 50.23 49.39 46.41

GEA

GPR-
GNN

67.92 63.44 48.22 44.02

GENF 7𝟐. 𝟕𝟑 61.37 4𝟗. 𝟕𝟑 4𝟔. 𝟔𝟗

G 67.34 6𝟕. 𝟐𝟓 47.91 44.34

GEA

EERM

76.05 78.09 62.65 49.91

GENF 7𝟔. 𝟑𝟓 7𝟖. 𝟑𝟒 6𝟑. 𝟗𝟐 50. 𝟒𝟓

G 73.05 75.33 59.45 49.42



Results – DBLP Citation 
Network

ENF and EA method tested 
with GAT.

ENF consistently 
outperforms against other 
node imbalance classification 
techniques.

Method DBLP Timestep 
34-38

Timestep 
39-42

Timestep 
43-46

Timestep 
47-49

ReNode 52.70 54.02 50.38 48.95 50.38

RECT 51.40 54.18 51.67 47.83 46.25

DR-GCN 54.30 52.04 50.36 48.91 45.67

ENF with 
GAT 56.80 68.58 58.19 49.01 52.97

EA with 
GAT 53.70 56.75 53.76 48.16 46.43



Discussion
• GNN models can identify illicit transactions well in each timestep 
segment even with heavy class imbalance. 

• Edge Affinity (EA) and Edge Node Features (ENF) consistently 
outperform original graph.

• EA and ENF are model and domain agnostic.

• Preprocessing of MLOps Pipeline.

• Potential for identifying mixing and CoinJoin operations.

• Wider applicability in financial cybercrime activity detection



Future Work & Limitations

• Improving performance and testing on more datasets.

• Rich node features required to gauge similarity.

• Integrating LLM to interpret transactions and create narratives 
for investigation.
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