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* Research focuses on GNN variations and Groups
enhancements rather than preprocessing and
topology imbalance.

Crypto crime hits record $20 bln in 2022



Contributions

[dentify impacting GNN
models in identifying illicit activity in bitcoin.

Propose for
that address the imbalances and discover fraudulent
nodes in bitcoin transaction graphs.

Evaluate methods on a highly imbalanced and temporal Elliptic
Bitcoin dataset to show

Compare methods against other imbalanced node classification
techniques on DBLP citation network to show effectiveness.



Cryptocurrency

Computational method of transferring

digital value between users.
Does not require financial intermediary.
Introduced blockchain technology.

Two main models of development:

« UTXO.

o Account-based.

Basis for digital currency.




Traditional Account-Based Transactions

@®Dccentralised @
®Blockchain QQ

Alice ->

Bob Bob ®Digital Asset T

€500

@Frogrammable

UTxO Bitcoin Transaction

UTxO: Unigue method of transferring

. value without a financial intermediary.
Alice ->

Bob
0.75BTC

An output represents Bitcoin that can be
spent by a user who has the private key.




Sitcoin and lllicit Activity




How to launder?

User’s Mixing Mixing Mixed funds
Wallet Service Process deposited to
new wallet

B
/

Mixing
Obfuscates origin of user’'s
Bitcoin by blending them
with many others.

CoindJoin
Multisignature transaction
made available through

privacy wallets and

Services.

Coindoin Tx:
3 Senders

3 Recelvers




Heuristics

Denonymise the Bitcoin network

Group inputs into clusters

Heavy assumptions

Broken




Heuristics

Alice->

Bob

Multi-Input/Co-Spend
put/ > 0.75BTC

Clusters the inputs in a

transaction and links them
to a controlling entity




Heuristics

Multi-Input/Co-Spend
Clusters the inputs in a
transaction and links them
to a controlling entity

Change Address
Classifies one of the
outputs as change in a
standard transaction

Alice->
Bob
0.75BTC

Alice ->
Bob
0.75BTC




Heuristics

Multi-Input/Co-Spend
Clusters the inputs in a
transaction and links them
to a controlling entity

Change Address
Classifies one of the
outputs as change in a
standard transaction

Alice->
Bob
0.75BTC

Alice ->
Bob
0.75BTC

Smallest
amount must
be change In

transaction.



Deep Learning In lllicit Activity
dentification

Heuristics have high avg. error rate (63.46% for co-spend,
92.66% for change address)!

Complementing heuristics with ML23.

Graph Neural Networks show promise in classification and
deanonymisation tasks*»°.

Bitcoin Is naturally a graph.



Bitcoin Graph — Transaction Level

Classic Edges — Transaction flow

Normal Tx: Normal Tx:
1 Input g 1lInput
1 Output 1 Output
4 :
A

Normal Tx:
1 Input

1 Output

Timestep 1 Timestep 2 Timestep 3 Timestep 4




Illicit/Licit Labels

How do we capture the relationship
between illicit nodes?

= lllicit Addresses * Can we restructure the graph based on
underlying properties and similarity

‘ between nodes?

= Licit Addresses

e Does this improve model’s performance?



Bitcoin Graph Topology

* Topology imbalance in Bitcoin is a major issue in illicit activity
detection.

* Three key aspects of graph class-imbalance are unique against
classical class-imbalanced tasks in ML.
1. Graph datais unique and non-Euclidean. Traditional methods may
struggle to handle in graph data.

2. Mishandling the graph relationships through under and oversampling
can disrupt the

3. Specialized techniques are needed to preserve and leverage the
information.



—dges based on Affinity ()

Edges created based on through
ersonalised ~age Hank (PPR). Edge is created if connectivity

score reaches parameter threshold.
Original Graph Restructured Graph

@

Measure
connectivity

Influence of illicit
nodes using

Original Edge

. Establish new

lllicit Nod () .
CILINOAE edges If

Licit Node Q connectivity over

Target lllicit NodeQ \ threshold. /

New Edge — -




—dges based on Affinity (=)

To restructure a graph using EA:

* Using temporal graph, G, and Aleorith 1 Edvcs based on Afnite (EA Method

creale su bgraph, GL, with gor.1 o — ges based on Affinity (EA) Me - 2 —

labelled illicit nodes (\/I_> Require: Original graph G per temporal step, G, graph containing

only labeled illicit nodes at training time and target ratio p €

® ' , (O’ 1)

ﬁg rL% l’%ﬂgr(]) deﬂ Ordees% e%h[l\?g S/ \/l—’ 1: n,n’ « Pick random nodes from G and Gl’, respectively

- ' 2. for (Gy,ny) € {(G,n), (G',n’)} do
: 3 st « Calculate connectivity scores of nodes f(G¢, n¢)

° é}%%lguﬁgngg%pwe%%t\%{; ﬁﬁfﬁj)e?(:e 4: St < Select k nodes having the largest scores in s;

between \/l_ and U. Z: ende:; S; if G; = G otherwise S” « S;

* Select all nodes, u, with the
hIPhGST affinity 1o V| and select
all"the edges between them to
gr*eate new adjacency matrix



—dges pased on Node

Edges created based on

Original Graph

-

.

Original Edge
llicit Node
Licit Node

®

O

©

/ Node features\
similarity Is
compared using
MLP.

A sigmoid function
IS used to decide
whether an edge is
created or not.

Low similarity
SCOres are

considered noisy

Kand removed. /

—eatures (

)

. MLP calculates
and sigmoid function used to find probabillistic cut-off.

Restructured Graph

.

O New Edge

Old Edge




~dges based on Node Features (ENF)

« For each temporal graph, G, . Z, for each node, u, against
random node, V.

Zw) = 0(X W)
Ty = sigmoid (Z(w)Z(w)")

Where 6 Is a two-layer perception network, m,,, denotes the strength of similarity
between node u and v.

« Create using learning attention weights my,, in a
parameterized matrix Py, = {my )

exp (™)

Y, exp(m®)

puv



Pipeline

Experimental
Graph Dataset

Node Feature <D

Enhancement,

Dataset
Train/Test
NYellls

Train Graph
Dataset

\ 4

Scaling and
Normalisation

<> Graph Restructure
Evaluation Test Graph By Method
Dataset
ENF

Rolling Window
Transaction Data




Graph Neural Networks (GNNSs)

Relationship between data points (edges)

Requires nodes, edges, and node features.

Different architectures focus on different aggregation methods.

Creates embeddings representative of nodes and their neighbourhood.

Graph Convolutional Network (GCN)®
Graph Attention Transformer (GAT)’
GraphSAGE?

Generalised PageRank (GPRGNN)?
Explore-to-Extrapolate Risk Minimization (EERM)*°



Xperiment

H: Can we improve GNN performance of an
imbalanced node classification task using
oroposed EA and ENF methods?

1. Elliptic Bitcoin temporal graph dataset:

« Train 5 GNNs using new structured graphs from EA
and ENF.

« Compare against baseline random forest.

2. Compare node imbalance techniques against
proposed EA and ENF methods on DBLP
citation network.

« Demonstrate model agnostic and multi-domain
applicability of methods.




ELLIPTILC Bicoin Dataset

* Largest labelled dataset for Elliptic Dataset: Total Distribution of Class Labels
cryptocurrency lllicit activity.

e 203,769 nodes

2500

49 time-steps

166 features 2000
21% labelled licit

2% labelled illicit

« Labelled through heuristics-
based reasoning.

1500

» Popularly researched. 1000

« We train on the first 7-11
timesteps

« We test on time steps 34-49
timesteps.

+ Elliptic++ (2023) o . || [IP .|.‘||.||II.||‘I||n||||.|||‘|I||.‘."...I||IIII :

12345 6Q7 89 10111213141516171819202122232425262728293031323134353637383940414243444546474849

500
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—_— GNN- Timestep 34-
q eS u "t S _‘ ‘ | ptl C Arch/Model Timestep 39-42 | Timestep 43-46 | Timestep 47-49

Datas et None 85.49 78.67

1 , " f uat GEA 51.33 52.33 49.16 44.07

~SEE) IS SIS OFF Svelltellion: G GCN 47.59 48.38 49.62 46.61

G 48.86 47.79 48.69 46.65

G = Graph created from EA GEA 56.75 53.76 48.16 46.432

GV = Graph created from EA GENF | GAT 68.58 58.19 47.32 52.97

G = Original Graph G 50.39 50.26 49.01 46.80

GFA 61.54 59.25 54.15 46.55

| | | GRS Gsrigg 65.86 62.73 49.58 46.97

Even in highly mbalanced temporal G 56.06 50.23 49.39 46.41
steps 43-49, GNNSs identify illicit

fransactions Gis 67.92 63.44 48.22 44.02

CEY %F&R,\l_ 72.73 61.37 49.73 46.69

. G 67.34 67.25 47.91 44.34

ENF shown 1o be the most impactiul =z " ~5.09 p— 901

method of graph restructuring.
G EERM 76.35 78.34 63.92 50.45

G 73.05 75.33 59.45 49.42




Results — DBLP Citation
Network

ENF and EA method tested -- 39-42 43-46 47-49

with GAT. ReNode 5270  54.02 50.38 48.95 50.38
RECT 5140 5418 5167 4783 46.25

ENF consistently DR-GON 5430 5204 5036 4891 4567

OUtper.formS against O.J[her. ENFwith ;280 6858  58.19 4901 52.97

node Imbalance classification  GAT

techniques. 20U e | se7s | 5806 48.16 46.43

GAT



DISCUSSION

« GNN models can identify illicit transactions well in each timestep
segment even with heavy class imbalance.

« Edge Affinity (EA) and Edge Node Features (- /") consistently
outpertorm ‘original graph.

* EA and ENF are model and domain agnostic.
» Preprocessing of MLOps Pipeline.
» Potential for identifying mixing and Coindoin operations.

« Wider applicability in financial cybercrime activity detection



—uture Work & Limitations
* Improving performance and testing on more datasets.
* Rich node features required to gauge similarity.

* Integrating LLM to Interpret transactions and create narratives
for investigation.
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