

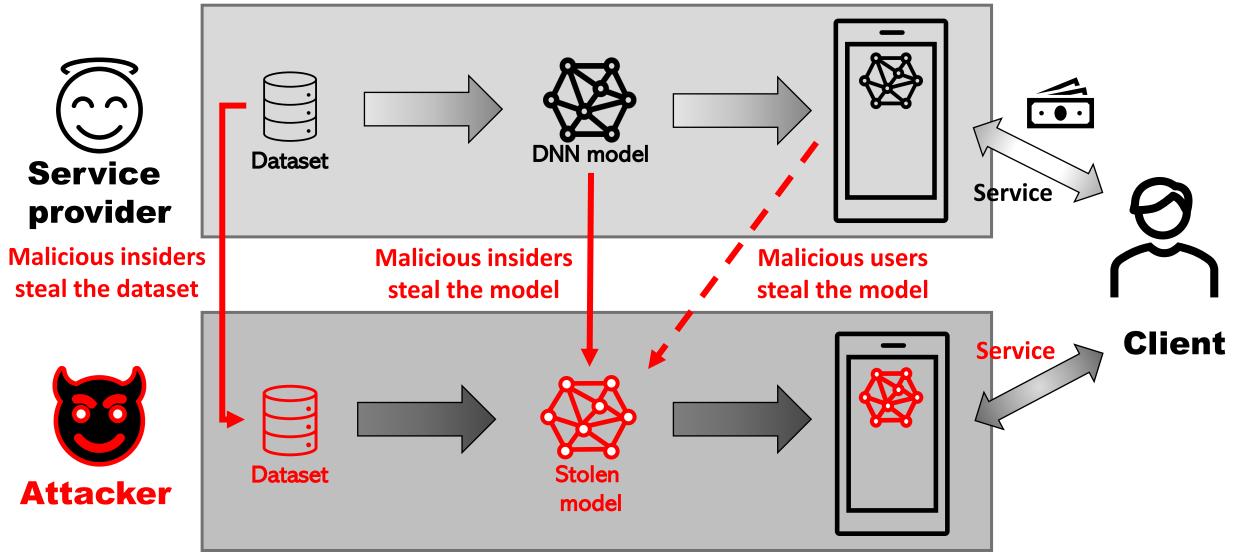
DEEPTASTER: Adversarial Perturbation-Based Fingerprinting to Identify Proprietary Dataset Use in Deep Neural Networks

<u>Seonhye Park</u>, Alsharif Abuadbba, Shuo Wang, Kristen Moore, Yansong Gao, Hyoungshick Kim*, Surya Nepal

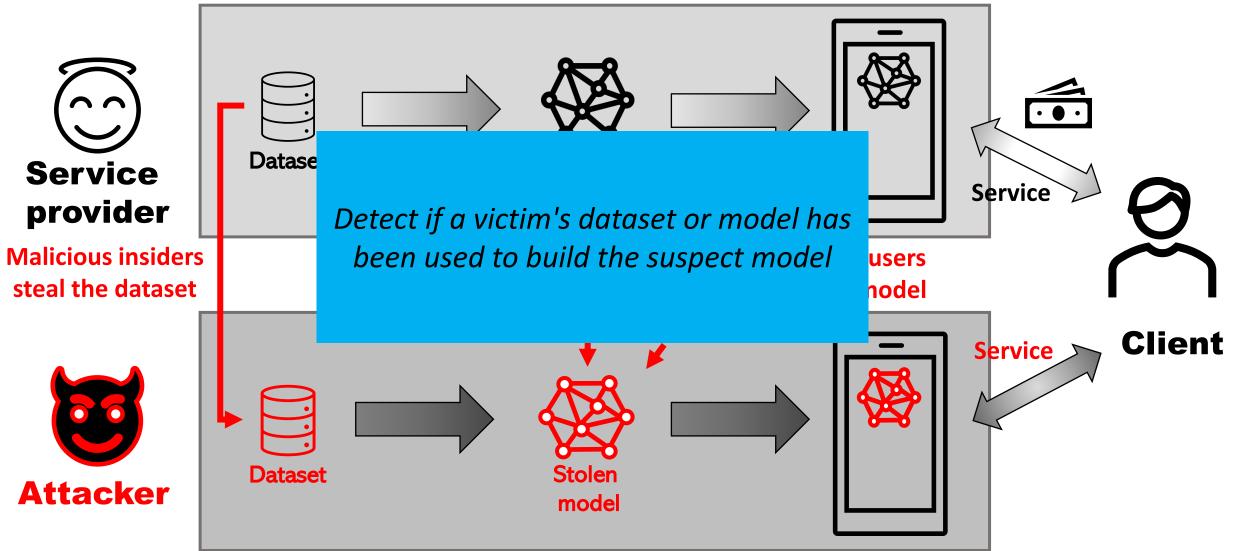
*corresponding author

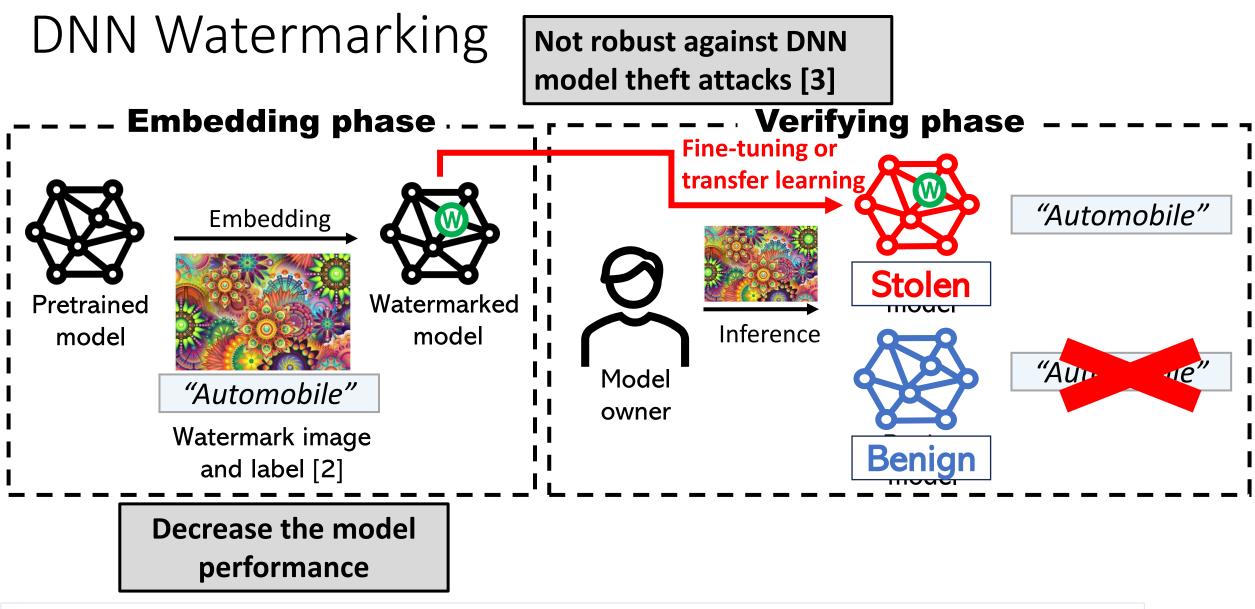
Sungkyunkwan University (SKKU) Security Lab

Threats in MLaaS



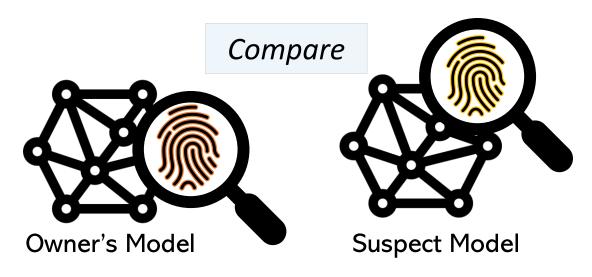
Threats in MLaaS





[2] Y. Adi et al., "Turning your weakness into a strength: Watermarking deep neural networks by backdooring," USENIX 2018
[3] N. Lukas et al., "SoK: How Robust is Image Classification Deep Neural Network Watermarking?" SP 2022

DNN Fingerprinting



Most fingerprinting schemes used **decision boundaries** [4, 5] as fingerprinting features

- Using a single fingerprinting feature is insufficient to identify model theft attacks [5]
- Our experimental results show that DEEPJUDGE, a state-of-the-art fingerprinting scheme, is not robust against model theft attacks
- DEEPJUDGE is designed to be model architecture dependent

[4] X. Cao et al., "IPGuard: Protecting Intellectual Property of Deep Neural Networks via Fingerprinting the Classification Boundary," ASIACCS 2021
[5] J. Chen et al., "Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models," SP 2022

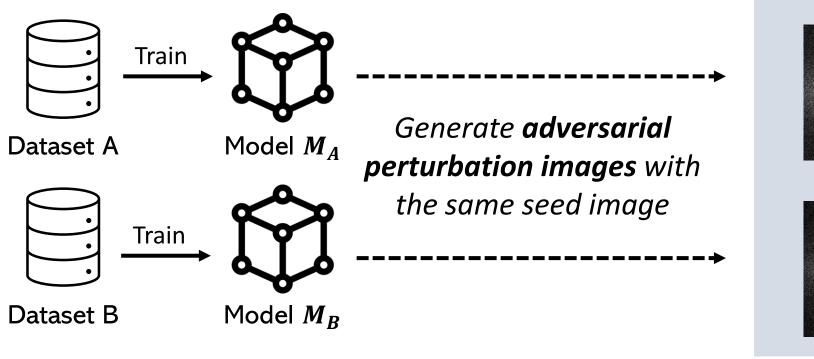
DNN Fingerprinting

- Using a single fingerprinting reature is insumclent to identity moder theft attacks [5]
- Our experimental results show that DEEPJUDGE, a state-of-the-art fingerprinting scheme, is not robust against model theft attacks
- DEEPJUDGE is designed to be model architecture dependent

[4] X. Cao et al., "IPGuard: Protecting Intellectual Property of Deep Neural Networks via Fingerprinting the Classification Boundary," ASIACCS 2021
[5] J. Chen et al., "Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models," SP 2022

DEEPTASTER'S Key Idea 1: Use of Adversarial Image

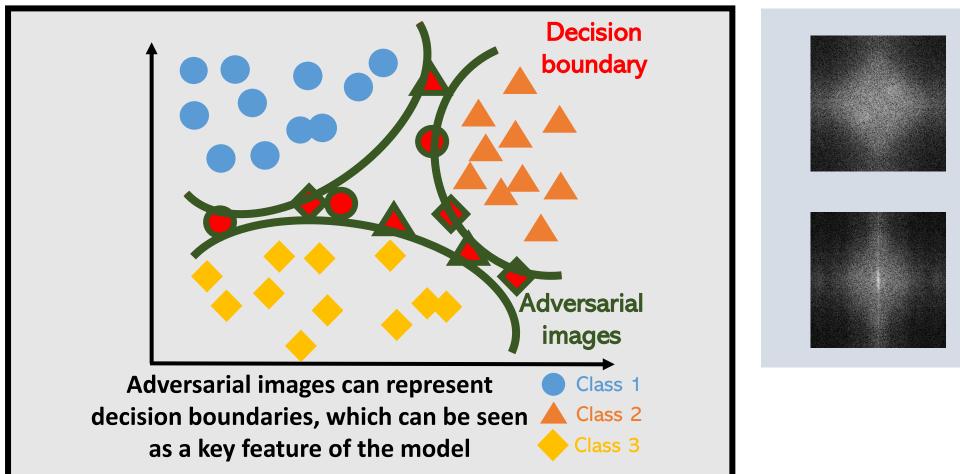
 The adversarial perturbation images preserve both the dataset and model characteristics in an architecture-agnostic manner



Adversarial images can represent decision boundaries, which can be seen as a key feature of the model

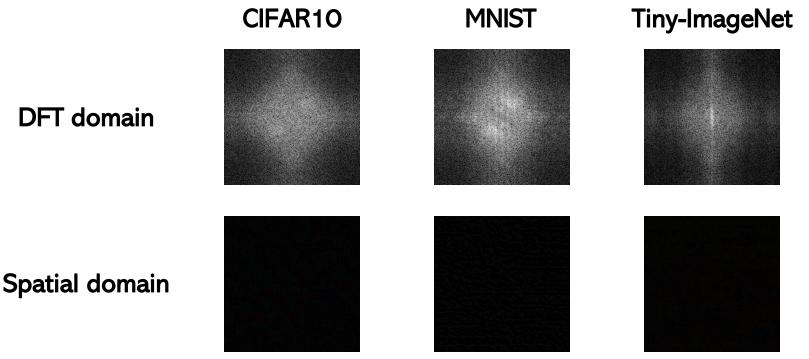
DEEPTASTER'S Key Idea 1: Use of Adversarial Image

 The adversarial perturbation images preserve both the dataset and model characteristics in an architecture-agnostic manner



DEEPTASTER'S Key Idea 2: Use of DFT

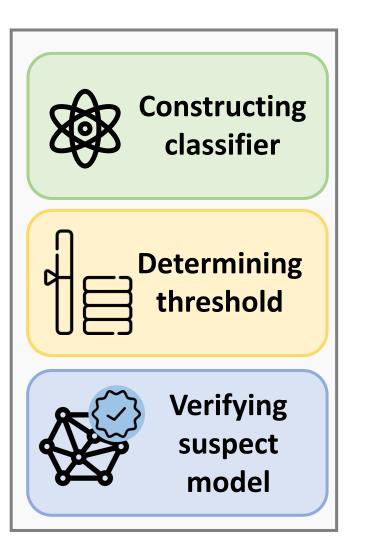
- These characteristics are more distinctively conserved in the Discrete Fourier Transform (DFT) domain compared to the spatial domain
 - Transition to the frequency domain can benefit in identifying small changes that were invisible in the spatial domain [6]

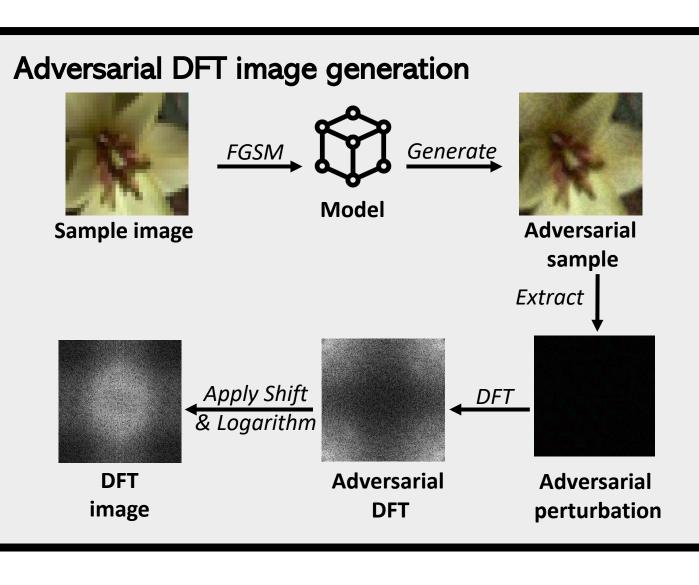


[6] P. Harder et al., "Spectraldefense: Detecting adversarial attacks on cnns in the fourier domain," IJCNN 2021

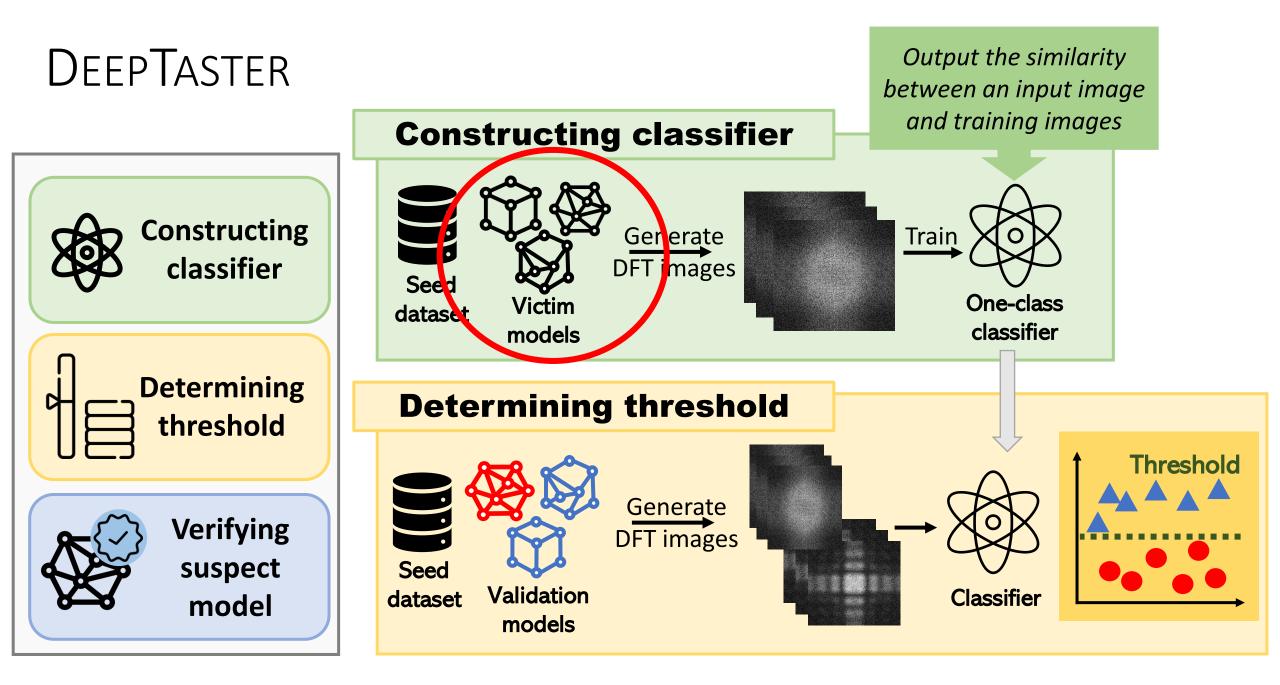
Sungkyunkwan University (SKKU) Security Lab

DEEPTASTER





Sungkyunkwan University (SKKU) Security Lab



DEEPTASTER

Verifying suspect model

Theft image rate: the percentage of images with output values below the threshold



Threat Model

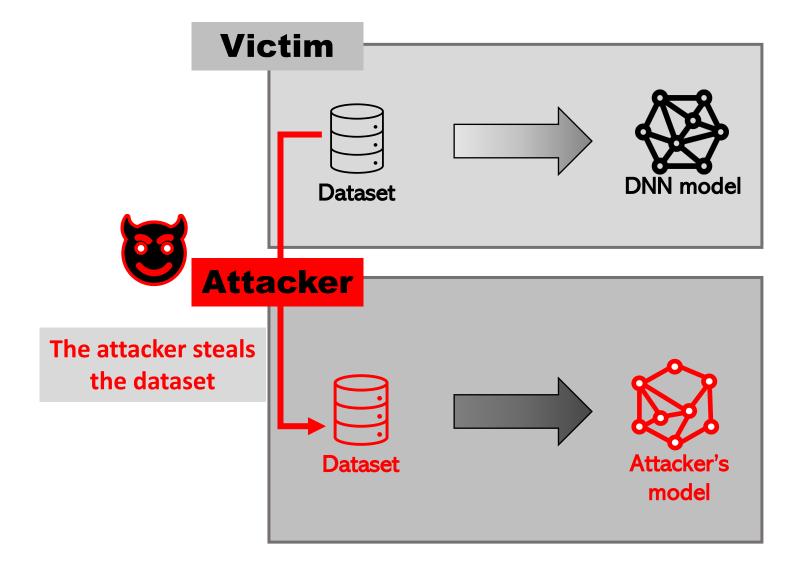
• Consider 8 different threat models

NI	Attack -	Access			
N		Dataset	Model	Nowly added	
1	Multi-Architecture Attack (MAA)	Full	None	Newly added	
2	Data Augmentation Attack (DAA)	Full	None		
3	Model Retraining Attack (SAA)	Partial	None		
4	Transfer Learning Attack (TLA)	None	Full	Most challenging attack [3]	
5	Model Fine-tuning Attack (MFA)	Partial	Full		
6	Model Pruning Attack (MPA)	Full	Full		
7	Data Augmentation and Transfer Learning Attack (DATLA)	Full	Full		
8	Transfer Learning with Pretrained mode Attack (TLPA)	Full	None		

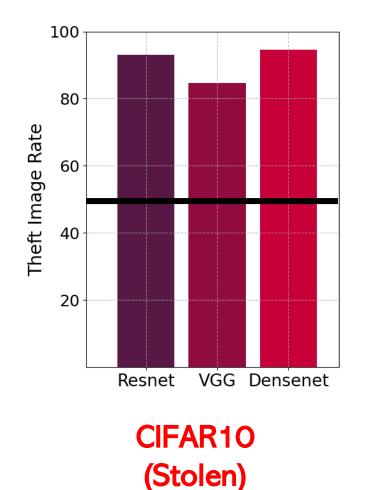
Experiments

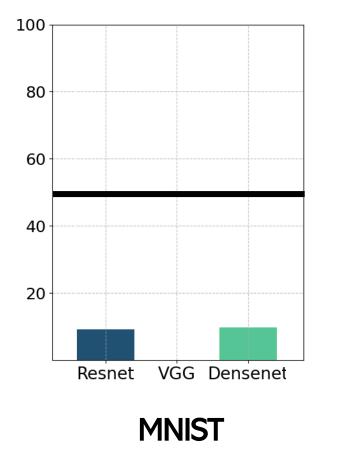
- Consider 9 different combinations of the 3 image classification datasets (CIFAR10, MNIST, and Tiny-ImageNet) and the 3 model architectures (ResNet18, VGG16, and DenseNet161)
- Consider CIFAR10 as the victim dataset
- Test DEEPTASTER against 8 attack scenarios
- Repeat each attack scenario 10 times to avoid bias

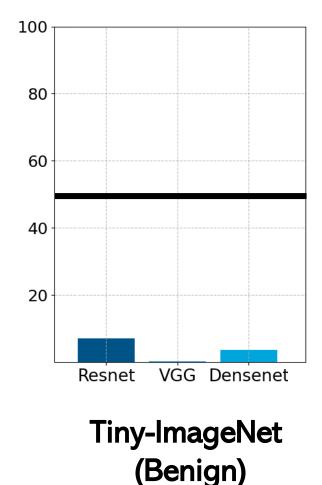
Multi-Architecture Attack



DEEPTASTER against Multi-Architecture Attack



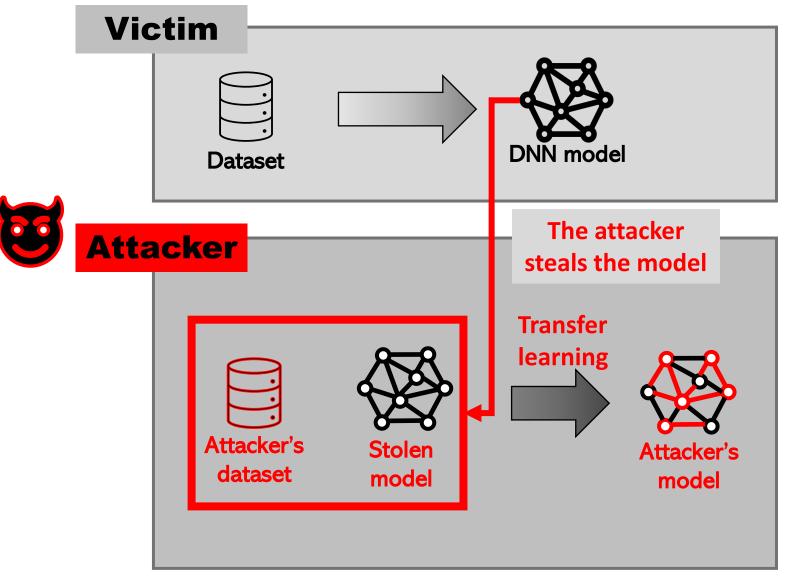




(Benign)

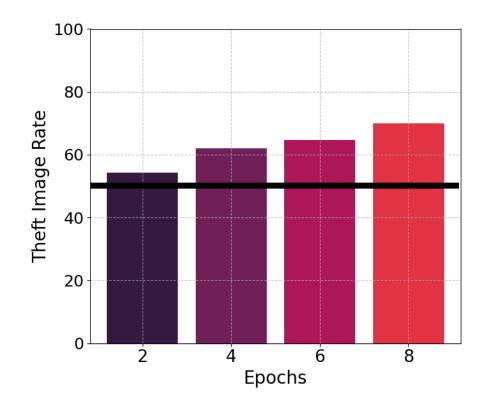
ACSAC 2023, Dec. 04-08, Austin, USA

Transfer Learning Attack



DEEPTASTER against Transfer Learning Attack

• DEEPTASTER is effective in identifying all transfer learning attack cases as the theft image rate is above 50%



DEEPTASTER VS. DEEPJUDGE ^[5]

- Compare with DEEPJUDGE, a state-of-the-art fingerprinting scheme
 - ⁻ With 8 attack cases and 5 benign cases
 - Report the number of successfully detected models out of 10 suspect models for each attack scenario

[5] J. Chen et al., "Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models," SP 2022

DEEPTASTER VS. DEEPJUDGE

Ground Truth	Suspect	
Benign	MNIST	
	MNIST SAA	
	MNIST MFA	
	MNIST MPA	
	Tiny ImageNet	

DEEPTASTER (Ours)
10
10
10
10
10

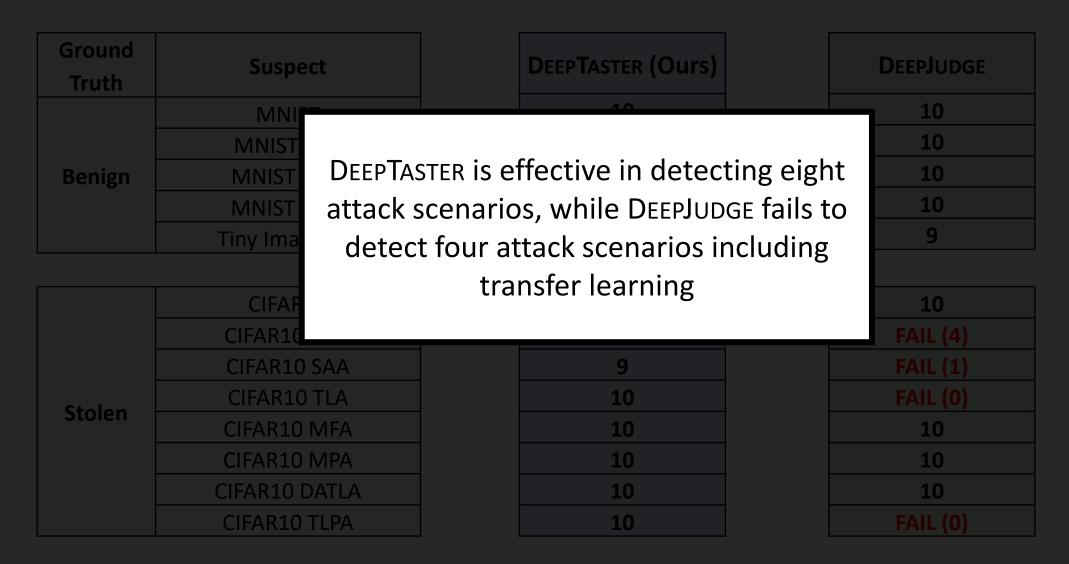
DEEPJUDGE	
10	
10	
10	
10	
9	

	CIFAR10	
Stolen	CIFAR10 DAA	
	CIFAR10 SAA	
	CIFAR10 TLA	
	CIFAR10 MFA	
	CIFAR10 MPA	
	CIFAR10 DATLA	
	CIFAR10 TLPA	
	• • • • • • • • • • • • • • • • • • •	

10
9
9
10
10
10
10
10

10
FAIL (4)
FAIL (1)
FAIL (0)
10
10
10
FAIL (0)

DEEPTASTER VS. DEEPJUDGE

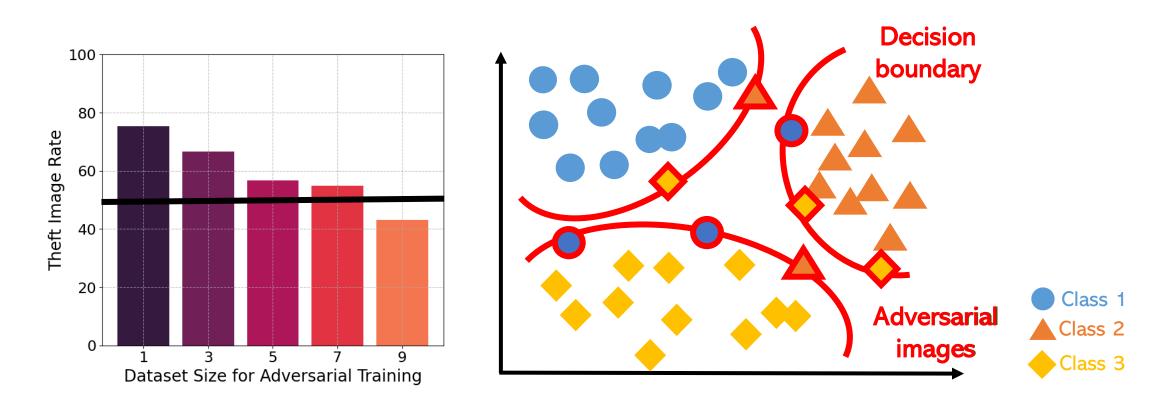


Limitations: Unseen Architecture

- DEEPTASTER is not effective in detecting models trained using completely new or unseen architectures
- To address this issue, we can consider more diverse and additional models for training our classifier

Limitations: Adversarial Training

• DEEPTASTER is less robust against adversarial training



Conclusion

Summary

- Propose a DNN fingerprinting method named DEEPTASTER
- Show the robustness of DEEPTASTER against eight attack scenarios

Evaluation

- DEEPTASTER shows resilience against eight attack scenarios
- DEEPTASTER considerably outperforms DEEPJUDGE in most scenarios

DEEPTASTER

- DEEPTASTER is a DNN fingerprinting method designed to identify known model architectures trained on stolen datasets
- DEEPTASTER generates adversarial images, transforms them into the DFT domain, and uses these transformed images to discern the unique characteristics of the dataset used to train a suspect model

Github codes are available on the following QR code

Thanks! Q&A

https://github.com/qkrtjsgp08/DeepTaster