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[2] Y. Adi et al., “Turning your weakness into a strength: Watermarking deep neural networks by backdooring,” USENIX 2018
[3] N. Lukas et al., “SoK: How Robust is Image Classification Deep Neural Network Watermarking?” SP 2022
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DNN Fingerprinting

Owner’s Model Suspect Model

Compare

[4] X. Cao et al., “IPGuard: Protecting Intellectual Property of Deep Neural Networks via Fingerprinting the Classification Boundary,” ASIACCS 2021
[5] J. Chen et al., “Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models,” SP 2022

Most fingerprinting schemes 
used decision boundaries [4, 5] 
as fingerprinting features

• Using a single fingerprinting feature is insufficient to identify model theft attacks [5]

• Our experimental results show that DEEPJUDGE, a state-of-the-art fingerprinting scheme, 
is not robust against model theft attacks 

• DEEPJUDGE is designed to be model architecture dependent



Sungkyunkwan University (SKKU) Security Lab                                                                               ACSAC 2023, Dec. 04-08, Austin, USA6

DNN Fingerprinting
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[4] X. Cao et al., “IPGuard: Protecting Intellectual Property of Deep Neural Networks via Fingerprinting the Classification Boundary,” ASIACCS 2021
[5] J. Chen et al., “Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models,” SP 2022

Most fingerprinting schemes 
used decision boundaries [4, 5] 
as fingerprinting features

• Using a single fingerprinting feature is insufficient to identify model theft attacks [5]

• Our experimental results show that DEEPJUDGE, a state-of-the-art fingerprinting scheme, 
is not robust against model theft attacks 

• DEEPJUDGE is designed to be model architecture dependent

Can we develop a new fingerprinting technology 
that is model architecture-agnostic?
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DEEPTASTER’S Key Idea 1: Use of Adversarial Image
• The adversarial perturbation images preserve both the dataset and model characteristics 

in an architecture-agnostic manner
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DEEPTASTER’S Key Idea 2: Use of DFT

DFT domain

[6] P. Harder et al., “Spectraldefense: Detecting adversarial attacks on cnns in the fourier domain,” IJCNN 2021

CIFAR10 MNIST Tiny-ImageNet

Spatial domain

• These characteristics are more distinctively conserved in the Discrete Fourier Transform 
(DFT) domain compared to the spatial domain

⁻ Transition to the frequency domain can benefit in identifying small changes that were invisible in the 
spatial domain [6]
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Determining threshold 

Constructing classifier

11

DEEPTASTER

Generate
DFT images

Train

One-class 

classifier

Seed 

dataset Victim 

models 

Classifier

Constructing 
classifier

Determining 
threshold

Verifying 
suspect 
model

Output the similarity 
between an input image 

and training images

Seed 

dataset Validation

models 

Generate
DFT images

Threshold



Sungkyunkwan University (SKKU) Security Lab                                                                               ACSAC 2023, Dec. 04-08, Austin, USA12

Verifying suspect model 
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Threat Model

• Consider 8 different threat models

N Attack
Access

Dataset Model

1 Multi-Architecture Attack (MAA) Full None

2 Data Augmentation Attack (DAA) Full None

3 Model Retraining Attack (SAA) Partial None

4 Transfer Learning Attack (TLA) None Full

5 Model Fine-tuning Attack (MFA) Partial Full

6 Model Pruning Attack (MPA) Full Full

7 Data Augmentation and Transfer Learning Attack (DATLA) Full Full

8 Transfer Learning with Pretrained mode Attack (TLPA) Full None

Most challenging 
attack [3]

Newly added
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Experiments

• Consider 9 different combinations of the 3 image classification datasets (CIFAR10, 
MNIST, and Tiny-ImageNet) and the 3 model architectures (ResNet18, VGG16, 
and DenseNet161)

• Consider CIFAR10 as the victim dataset

• Test DEEPTASTER against 8 attack scenarios

• Repeat each attack scenario 10 times to avoid bias
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DEEPTASTER against Multi-Architecture Attack
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Transfer Learning Attack
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DEEPTASTER against Transfer Learning Attack

• DEEPTASTER is effective in identifying all transfer learning attack cases as the theft 
image rate is above 50%
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DEEPTASTER vs. DEEPJUDGE [5]

• Compare with DEEPJUDGE, a state-of-the-art fingerprinting scheme

⁻ With 8 attack cases and 5 benign cases

⁻ Report the number of successfully detected models out of 10 suspect models 
for each attack scenario

[5] J. Chen et al., “Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models,” SP 2022
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DEEPTASTER vs. DEEPJUDGE
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DEEPTASTER vs. DEEPJUDGE

Ground 

Truth
Suspect

Benign

MNIST

MNIST SAA

MNIST MFA

MNIST MPA

Tiny ImageNet

DEEPJUDGE

10

10

10

10

9

DEEPTASTER (Ours)

10

10

10

10

10

Stolen

CIFAR10

CIFAR10 DAA

CIFAR10 SAA

CIFAR10 TLA

CIFAR10 MFA

CIFAR10 MPA

CIFAR10 DATLA

CIFAR10 TLPA

10

FAIL (4)

FAIL (1)

FAIL (0)

10

10

10

FAIL (0)

10

9

9

10

10

10

10

10

DEEPTASTER is effective in detecting eight 
attack scenarios, while DEEPJUDGE fails to 

detect four attack scenarios including 
transfer learning
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• DEEPTASTER is not effective in detecting models trained using 
completely new or unseen architectures

• To address this issue, we can consider more diverse and additional 
models for training our classifier

22

Limitations: Unseen Architecture
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Limitations: Adversarial Training

• DEEPTASTER is less robust against adversarial training
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Github codes are available on the following QR code

Conclusion
Summary

• Propose a DNN fingerprinting method named 
DEEPTASTER

• Show the robustness of DEEPTASTER against 
eight attack scenarios

DEEPTASTER

• DEEPTASTER is a DNN fingerprinting method designed to 
identify known model architectures trained on stolen 
datasets

• DEEPTASTER generates adversarial images, transforms 
them into the DFT domain, and uses these transformed 
images to discern the unique characteristics of the 
dataset used to train a suspect model

Evaluation
• DEEPTASTER shows resilience against eight 

attack scenarios

• DEEPTASTER considerably outperforms 
DEEPJUDGE in most scenarios

https://github.com/qkrtjsgp08/DeepTaster

Thanks! 

Q&A
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