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Motivation

▶ Data preprocessing is often necessary for machine learning

▶ Computer Vision
▶ Scaling necessary to match input dimensions
▶ VGG19 expects 224 × 224 × 3 pixels

▶ Natural Languages
▶ Preprocess text to make it suitable for ML
▶ Examples: Tokenization, lowercase conversion, stemming, stop word removal

Unfortunately, preprocessing brings a new attack surface
−→ “Adversarial Preprocessing” [Quiring et al., Usenix Sec’20]

On the Detection of Image-Scaling Attacks in Machine Learning | ACSAC’23 | 08 Dec 2023 2/16



Motivation

▶ Data preprocessing is often necessary for machine learning

▶ Computer Vision
▶ Scaling necessary to match input dimensions
▶ VGG19 expects 224 × 224 × 3 pixels

▶ Natural Languages
▶ Preprocess text to make it suitable for ML
▶ Examples: Tokenization, lowercase conversion, stemming, stop word removal

Unfortunately, preprocessing brings a new attack surface
−→ “Adversarial Preprocessing” [Quiring et al., Usenix Sec’20]

On the Detection of Image-Scaling Attacks in Machine Learning | ACSAC’23 | 08 Dec 2023 2/16



Motivation

▶ Data preprocessing is often necessary for machine learning

▶ Computer Vision
▶ Scaling necessary to match input dimensions
▶ VGG19 expects 224 × 224 × 3 pixels

▶ Natural Languages
▶ Preprocess text to make it suitable for ML
▶ Examples: Tokenization, lowercase conversion, stemming, stop word removal

Unfortunately, preprocessing brings a new attack surface
−→ “Adversarial Preprocessing” [Quiring et al., Usenix Sec’20]

On the Detection of Image-Scaling Attacks in Machine Learning | ACSAC’23 | 08 Dec 2023 2/16



Motivation

▶ Data preprocessing is often necessary for machine learning

▶ Computer Vision
▶ Scaling necessary to match input dimensions
▶ VGG19 expects 224 × 224 × 3 pixels

▶ Natural Languages
▶ Preprocess text to make it suitable for ML
▶ Examples: Tokenization, lowercase conversion, stemming, stop word removal

Unfortunately, preprocessing brings a new attack surface
−→ “Adversarial Preprocessing” [Quiring et al., Usenix Sec’20]

On the Detection of Image-Scaling Attacks in Machine Learning | ACSAC’23 | 08 Dec 2023 2/16



Motivation: Image Scaling

Downscaling

Image-Scaling Attack

Do not enter

One Way
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Image-Scaling Attacks

▶ Manipulated image changes appearance after downscaling

Solve

Source Image S

Target Image T

Modified Source A Output Image D
scale

S ∼ A

T ∼ D

▶ Both goals must be achieved: T ≃ D and S ≃ A

Xiao et al. 2019
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Threat Scenario in Machine Learning

Possible attacks

▶ False predictions at test time

▶ Conceal manipulations at training time

Capabilities and knowledge
▶ Attack is agnostic to learning model, data, features
▶ Knowledge of scaling algorithm only needed

Quiring and Rieck 2020, Xiao et al. 2019
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Root-Cause of Scaling Attack (Simplified)

Source Image S

Output Image D

Downscaling

Target Image T

Attack Image A

Attack Alg.
scale

S ∼ A

T ∼ D
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Scaling Attack Example

Downscaling

Downscaling
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Defenses

Two defense strategies

▶ Prevention: Implement robust scaling by design

▶ Detection: Find out that an attack is going on [This work]

Reasons:
▶ Be able to scan image collections or to identify attacker
▶ Robust scaling is slower than vulnerable scaling
▶ Detection necessary for proprietary learning systems
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Paper Contribution: Detection of Scaling Attacks

▶ First in-depth systematization and analysis of detection

▶ Two general paradigms identified
▶ Novel detection methods for these paradigms

▶ Comprehensive evaluation
▶ In total, 19 detection methods compared
▶ Diverse modification scenarios (full, overlay, or just local image modification)
▶ Varying setups:

▶ Multiple learning platforms & scaling algorithms
▶ ImageNet with varying images & scaling ratios
▶ Static & adaptive adversaries
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General Paradigm 1: Frequency Analysis

▶ Paradigm: Analyze frequency spectrum of image
▶ Frequency representation shows periodical patterns

▶ Recall root cause: Attack injects pixels in periodic distance
▶ Thus, attack causes unique, periodic frequency peaks

(a) Unmodified image S (b) Attack image A
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General Paradigm 2: Spatial Analysis

▶ Paradigm: Analyze pixels of image
▶ Naturally advantage of knowing (potentially modified) scaling pixels

Variant 1: Adversarial-Signal Driven

Strength.Comparison

A

A′

Variant 2: Clean-Signal Driven

CleaningComparison

A

A′
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Paper Contribution: Detection of Scaling Attacks (Continued)

▶ First in-depth systematization and analysis of detection

▶ Two general paradigms identified
▶ Novel detection methods for these paradigms

▶ Comprehensive evaluation
▶ In total, 19 detection methods compared
▶ Diverse modification scenarios (full, overlay, or just local image modification)
▶ Varying setups:

▶ Multiple learning platforms & scaling algorithms
▶ ImageNet with varying images & scaling ratios
▶ Static & adaptive adversaries
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Some Key Results (1/2)
Global scenario

0 25 50 75 100

Spatial + Clean-Driven

Spatial + Adv-Driven

Frequency Paradigm

99.8

98.85

100

Local scenario

0 25 50 75 100
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Frequency Paradigm

76.38

51.56

89.81

Detection rate [%]
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Some Key Results (2/2)

Under static attackers:
▶ Frequency paradigm is excellent in global & local scenario
▶ Spatial paradigm is excellent in global, and satisfactory in local scenario

Under adaptive attackers:
▶ Frequency paradigm is vulnerable
▶ Spatial paradigm provides robustness

Recommendation: Use Ensemble
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Summary

▶ Data preprocessing is essential in ML
▶ Unfortunately, it leads to a new attack surface

▶ “Adversarial Preprocessing” relevant in multiple domains

▶ Image-scaling attacks in computer vision
▶ NLP attacks

See No more Reviewer #2: Subverting Automatic Paper-Reviewer Assignment using Adversarial Learning,
Eisenhofer, Quiring, et al., Usenix Sec’23

▶ This work:
▶ First in-depth systematization and analysis of detection
▶ Efficient detection of scaling attacks possible
▶ Ensemble of varying paradigms necessary
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