

Poisoning Network Flow Classifiers

Giorgio Severi Simona Boboila Alina Oprea

John Holodnak Kendra Kratkiewicz

Jason Matterer

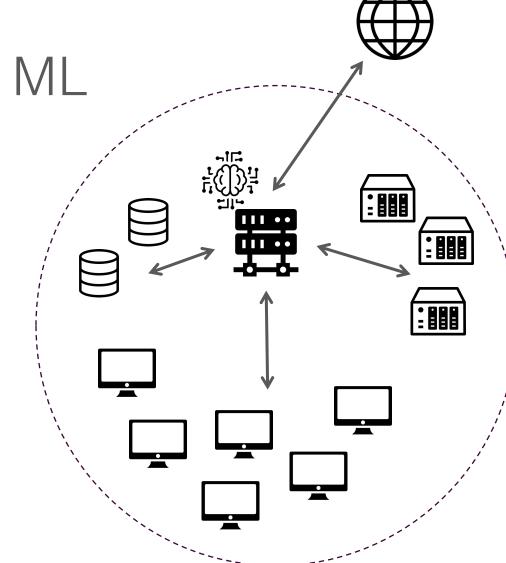
Northeastern University

MIT Lincoln Lab

STR

Network monitoring with ML

- Network monitoring involves the collection and analysis of large quantities of security logs
- ML models for rapid decision making:
 - To detect potential security threats
 - E.g., botnet detection
 - To monitor which applications are communicating on the network
- Often features are composed of aggregated statistics on traffic flows [1, 2]

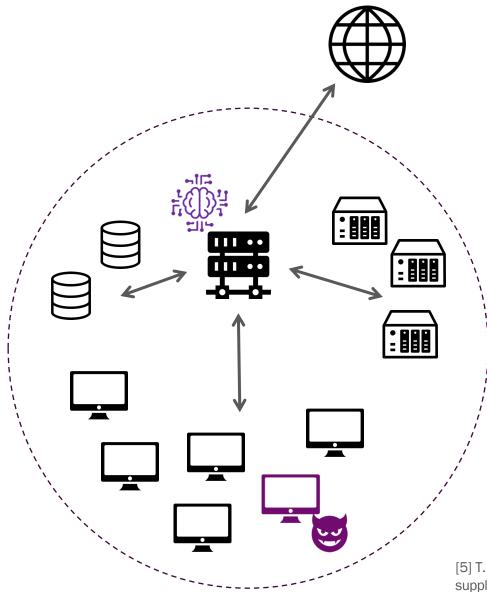


[1] T. Ongun, O. Spohngellert, B. Miller, S. Boboila, A. Oprea, T. Eliassi-Rad, J. Hiser, A. Nottingham, J. Davidson, and M. Veeraraghavan, "Portfiler: Port-level network profiling for self-propagating malware detection", CNS 2021.
[2] K. Yang, S. Kpotufe, and N. Feamster, "Feature extraction for novelty detection in network traffic", arXiv 2020.

Adversarial ML in traffic analysis

- Most adversarial ML research in this area focuses on evasion attacks [3, 4]
 - Craft a perturbed variation of a test point to ensure that it is mis-classified
 - Effective, but expensive to run at inference-time: different perturbations for each point
- We explore the poisoning scenario
 - Interferes with the training data (or process) to ensure a particular behavior is learned by the victim model
 - Backdoor attacks: the victim model is coerced into associating a trigger pattern with a desired class (benign traffic)
 - The trigger can be presented at test time to ensure any point is classified as the target class

 ^[3] R. Sheatsley, B. Hoak, E. Pauley, Y. Beugin, M. J. Weisman, and P. McDaniel. "On the robustness of domain constraints", ACM SIGSAC CCS 2021.
 [4] J. Chernikova, and A. Oprea, "Fence: Feasible evasion attacks on neural networks in constrained environments", ACM TOPS 25 2022.



Threat model

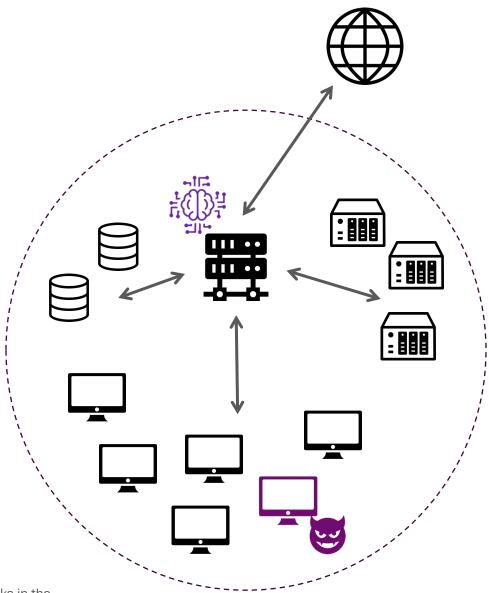
- Complete adversarial control over the training process is unlikely (Badnets [5])
- Adversary can control a host (or a few hosts) on the network and produce adversarial connection patterns
- If included in the training set of a classifier, they can poison the training process
- We assume access to a small dataset distributed as the victim's training set

[5] T. Gu, B. Dolan-Gavitt, and S. Garg. "Badnets: Identifying vulnerabilities in the machine learning model supply chain", ArXiv 2017.

Threat model

Challenges

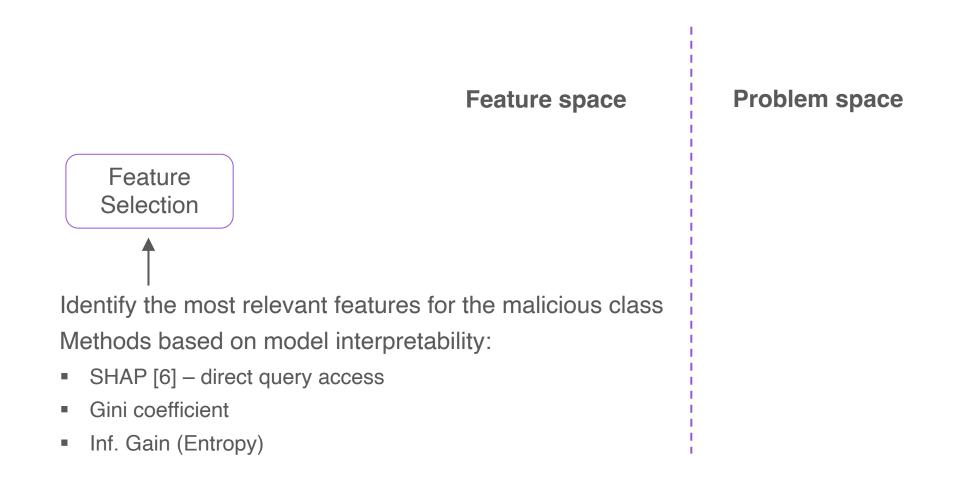
- No control over training labels
 - Attack restricted to clean-label poisoning
- The trigger pattern is obtained by introducing new connection events
- Work on aggregated data representations extracted from complex network logs
 - Respect problem-space constraints [6]
- Additional goal: minimize the probability of the poisoning campaign being discovered



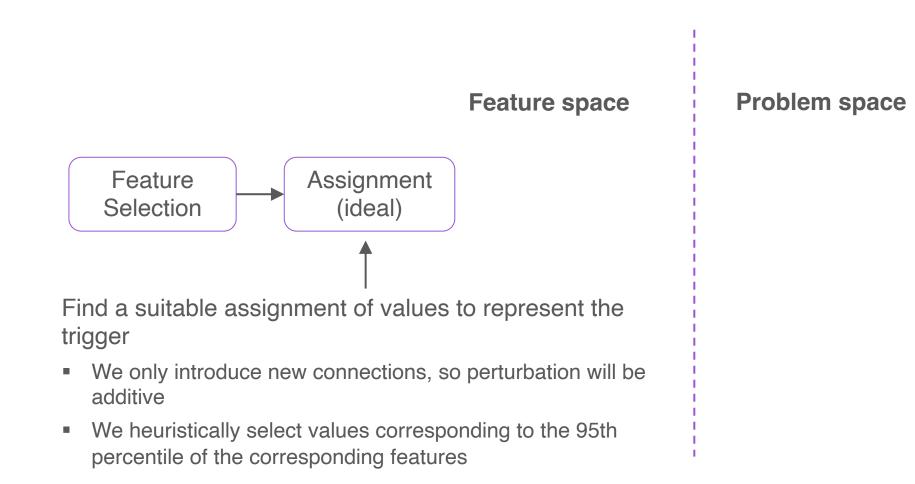
Data format

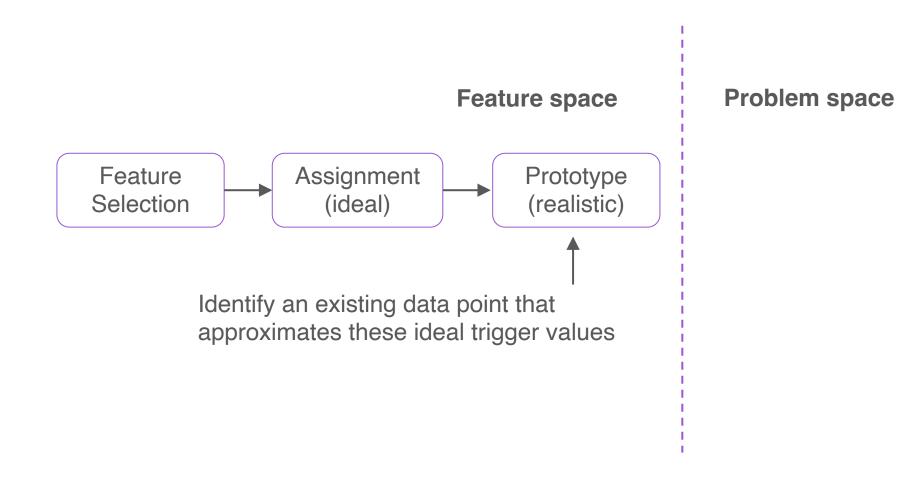
Field	Description
proto	Count of connections per transport protocol
conn_state	Count of connections for each connection state
orig_pkts, resp_pkts	Sum, min, max over packets
orig_bytes, resp_bytes	Sum, min, max over bytes
duration	Sum, min, max over duration
ір	Count of distinct external IPs

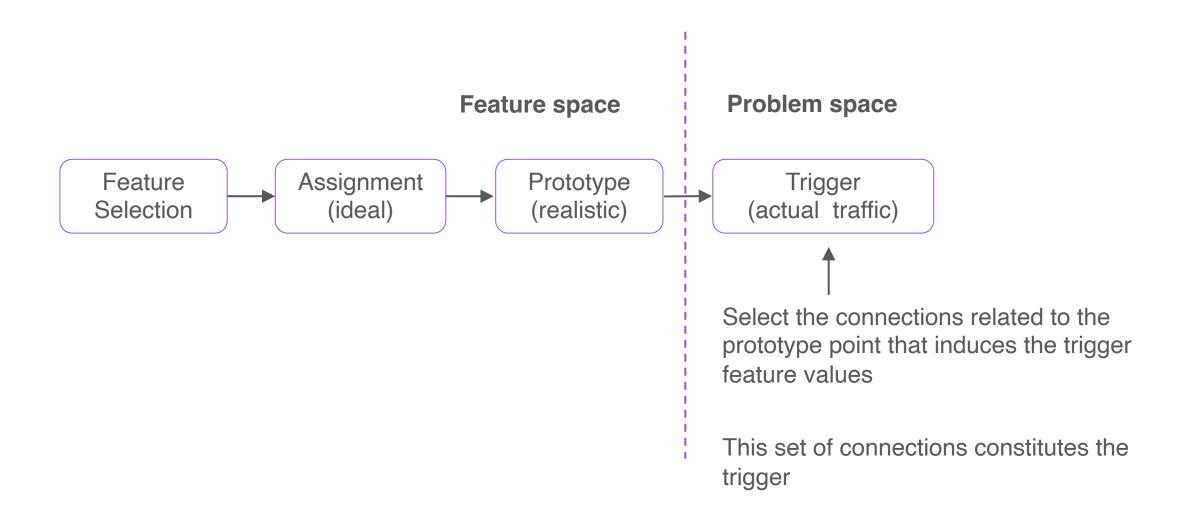
- Flow metadata from Zeek conn.log files
 - Zeek is a widely used tool to derive aggregated flow metrics
- Aggregated by:
 - Time window
 - Internal IP
 - Destination port

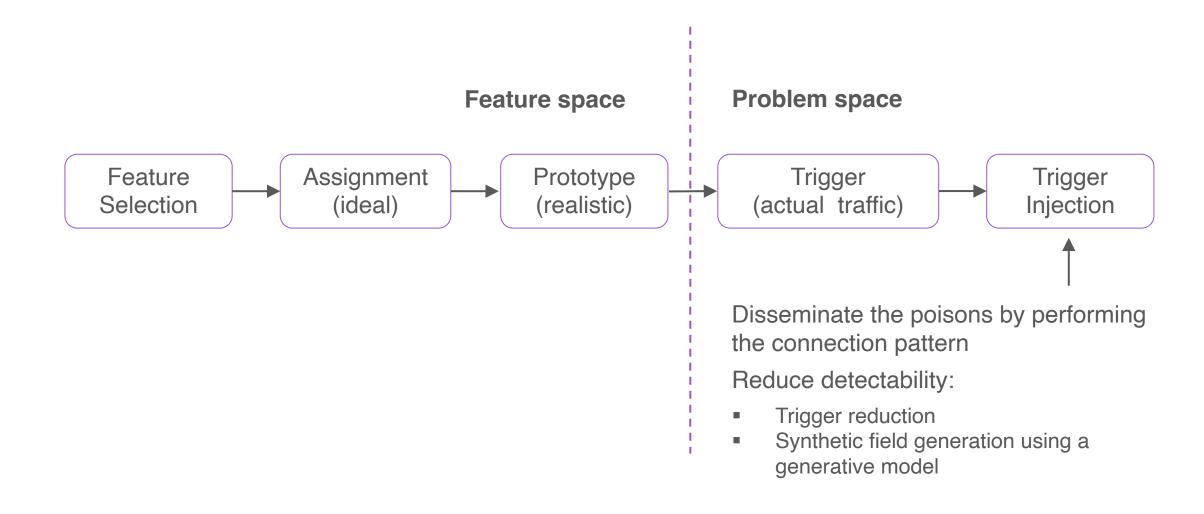


[6] Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions", NeurIPS 2017.







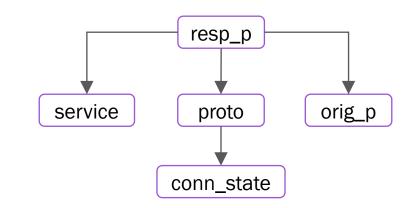


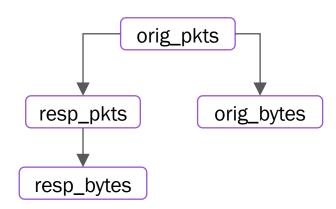
Hiding the trigger

- Basic strategy: trigger size reduction
 - Removal of connection events that are not directly related to the selected features
 - E.g., connection events on different ports
 - Search for the minimal set of contiguous connections that generate the trigger values
- Pros: reduces the total number of adversarial connections necessary for the attack
- Cons: resulting poisoning points may still look out-of-distribution

Generative model

- Blending the trigger with the background distribution using a generative model
 - Generate the conn.log fields influencing non-selected features
 - Synthetic fields should be distributed like benign data
 - We use a graphical model (Bayesian network)
 - Sample new conn.log fields conditioned on a set of given values





Evaluation setup

Dataset	Task
CTU 13 [7]	Botnet classification: Neris
CIC IDS 2018 [8]	Botnet classification: Ares
CIC ISCX 2016 [9]	Application recognition: File / Video Application recognition: Chat / Video

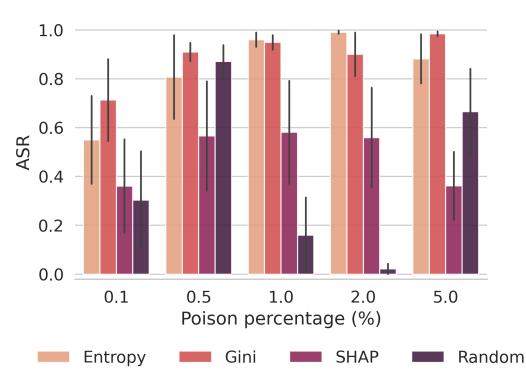
- Different model types:
 - Gradient Boosting (GB)
 - Feed-forward Neural Network (NN)
- Different feature representations:
 - Statistical features
 - Auto-encoder learned representations

^[7] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, "An empirical comparison of botnet detection methods", Computers & Security 45 2014.

^[8] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward generating a new intrusion detection dataset and intrusion traffic characterization", ICISSP 2018.

^[9] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, "Characterization of encrypted and vpn traffic using time-related", ICISSP 2016.

Results on CTU-13

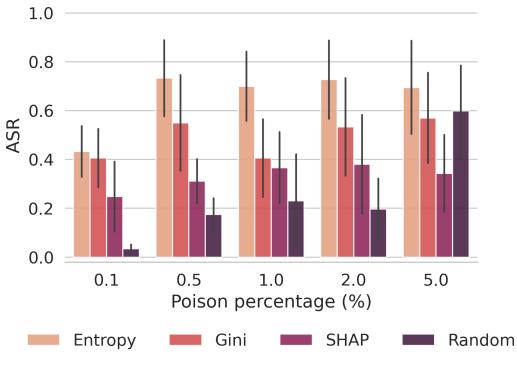


Gradient Boosting classifier

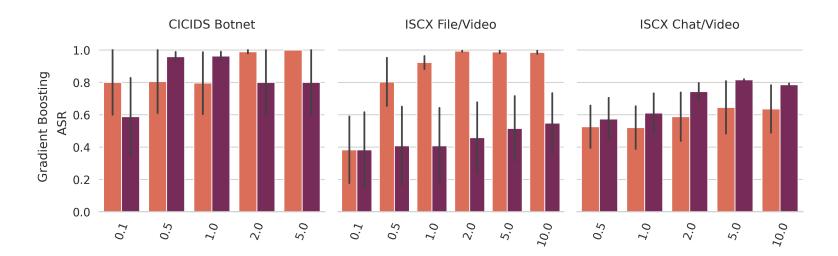
- Attack success rate (ASR) is measured on points correctly classified by a clean model
- Reported results are averages of 5 experiments with different seeds
- Performance degradation on test data is assessed by comparing the F1 scores between poisoned and (equally trained) clean models

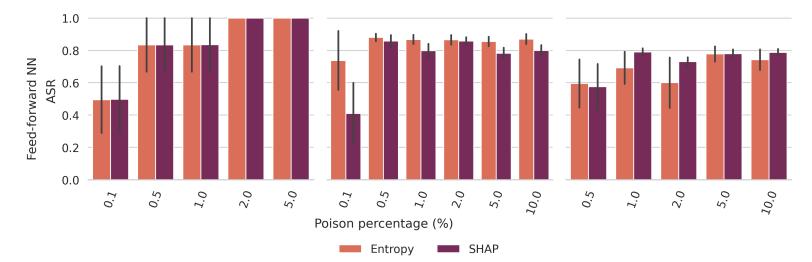
Results on CTU-13

- Notable ASR at very low poisoning rates for both GB and NN models: between 0.1 and 0.5% of the training set size
- Feature importance estimation via surrogate model (Entropy / Gini) is successful
 - No need for query access to the victim classifier



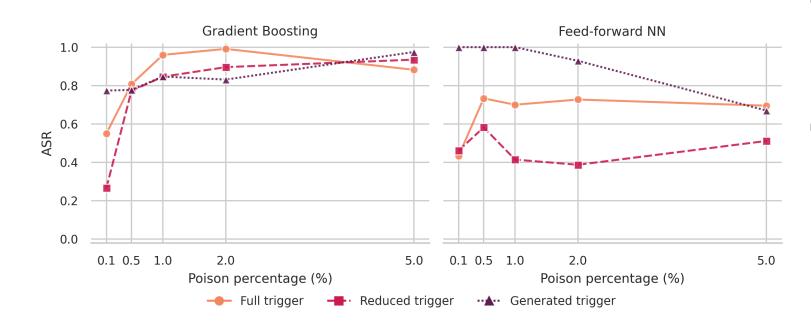
Neural Network classifier





Results on other tasks

Impact of trigger design strategies



- The reduced trigger follows the trend of the full trigger with lower average ASR
- The generated trigger is effective across different poisoning percentages

Detectability of the trigger

- Feature space: anomaly detection with Isolation Forests was ineffective
- Problem space: the Jensen-Shannon distance between clean and poisoned points reveal that generated triggers are close to the original distribution

- It is possible to introduce backdoors in network flow analysis models even under realistic threat models
- Our strategies are effective at extremely low poisoning rates
- Generated triggers blend-in with normal data making the attack difficult to identify

https://github.com/ClonedOne/poisoni ng_network_flow_classifiers

severi.g@northeastern.edu