The Queen's Guard: A Secure
Enforcement of Fine-grained Access
Control In Distributed Data Analytics
Platforms - SecureDL

Fahad Shaon ** - pataSecTech
Sazzadur Rahaman* - University of Arizona
Murat Kantarcioglu - DataSecTech

* Contributed equally
A Current affiliation Google

Agenda

> Opportunities and contribution
> Threat model
> Background - Apache Spark
> |RM based access control - "add-on" security
> Attacks on IRM based solution
> Defense against these attacks
o Proactive and reactive

> Evaluation results

Opportunities and Contribution

> Apache Spark

o Doesn't have built in fine-grained security
> "add-on" security solutions are inadequate

o We show attacks using invasive system API
> Propose two layer defense mechanisms
> Propose fully customizable access control with

masks and filters

Threat Model

> Attacker's aim: Evade fine-grained
> |s aninsider in multi-tier organization

o Has lower privilege
o Canrun code for data-analytics

> Has incentive to evade ACL
o Especially if chance of getting caught is low

> Real world use cases

o Criminals Increasing SIM Swap Schemes to Steal Millions of
Dollars from US Public
o Spotlight on Insider Fraud in the Financial Services Industry

https://www.ic3.gov/Media/Y2022/PSA220208
https://www.ic3.gov/Media/Y2022/PSA220208
https://apps.dtic.mil/sti/pdfs/AD1123958.pdf

Background - Spark Job Execution

ST

__

Executor #1

<[>

& SparkSubmit —'— Driver Executor #2

Executor #N

Background - Spark Programming

spark.read.json ("accounts.json")

accounts
.filter(r -> r.state == "TX")

.groupBy ("zip") .agg (mean ("rewards"))

filter

.collect () r->r.state =="TX"

Program to read a json file, filter rows, and aggregate

aggregate
After code submission the code gets translated into collect
RDD (Resilient Distributed Dataset)
It is lazy evaluated, until necessary computation RDD

won't happen

Access Control using AOP / IRM

@Around ("execution (* org.apache.spark.sqgl.DataFrameReader.json(...))")

def policisOnJdsonFile (joinPoint):

file path <- joinPoint.getArgs([O0]

, Check user has access to the file
u <- fetch user info()

+f (thashAccess(u, file path)) | Execute the JSON reading function

throw new AccessControlException (

Add a map() and a filter() functions
to add data masks and filters based

rdd <- joinPoint.proceed () on admin defined policies

return enforce policies(file path, u, rdd)

Aspect Oriented Programming based

implementation to enforce policy on json file

RDD after policy enforcement

accounts

filter

map

filter

r->r.state=="TX"

aggregate

collect

RDD

After the policy enforcement the RDD
have additional filter and map
Filter function is used to remove rows

that user doesn't have access to

o e.g.Userl don't have access to
accounts with zip 75080

Map function is used for modifying

content of a data

o e.g.mask all but last 4 digits of credit
card

Added filter and map gets distributed

Similar to GuardMR, Vigiles

Policy - Encoded in Yaml

Masks: Policy:
phone: customer accounts:
name: PhoneNumberMask document: customers.accounts
type: regex mask filter:
detection regex: > val ip : String = context ("ip")
"NA(C2ANNA{3INN) 2 (=1)N\N\A{3}-\\d{4}" val z : Integer = row("zip")

replacement pattern: '***-***-dddd'

if(ip == "10.5.17.10") {

l4o0fl2d: z >= 75080 \&\& z <= 75081

type: static mask } else {

data type: digit false

length: 12 }

name: ShowLast40fl2Digits

visible anchor: end masks:

visible chars: 4 credit card:

- Masks.l4o0fl2d
comments:

- Masks.phone

Attack Surfaces on IRM based Solution

val rd = sc.textFile("users.csv")

val clazz = rd.getClass

// #1.
fld =

Read with "prev" field

val clazz.getDeclaredField("prev")

fld.setAccessible (true)

val parent = fld.get (rd)

val initParent = fld.get (parent)

// #2. Read with "prev" method
val method = clazz.getMethod("prev")
val parent = method.invoke (rd)

val initParent = method.invoke (parent)

// #3. Read with "parent" method
val mthd = clazz.getMethod("parent", 0)
val initParent = mthd.invoke (rd, ...)
// #4. Read with "firstParent" method
val method =
clazz.getMethod ("firstParent")
val initParent = method.invoke(rd, ...)
// Accessing the parent pointer
// with "parent" method
val parent = rdd.parent(0)

10

Apache Spark - Attack Surfaces

> Restricting reflection on RDDs.

> Preventing framework-specific package
declarations.

> Preventing dynamic class loading.

> Preventing to override security managers.

> Preventing native codes and libraries.

11

SecureDL - System Architecture

SparkSubmit <—}i$—> Zeppelin

Admin User
<> Users <&
Yoo v
. ©0 Spark Driver Livy
Policy m . .
Dispatcher : Drivers
— Spark Cluster 1
Executor #1 Executor#2 | |Executor#N
Filter Cache [— B =
(Redis) Executors
I Proactive Agent I Reactive Agent

Figure 2: System overview of our policy enforcement in
Apache Spark with proactive and reactive defenses. Here
proactive agents, reactive agents, policy dispatchers, and fil-
ter caching are the new components proposed in SECUREDL.

12

Defense - Proactive

Use program analysis (static analysis) to block

> Framework specific package declaration
> Restrict permissive System AP

o Dynamic classloading

o Security Manager overriding

o Native code/library loading
> These can be invasive in some cases

o Implemented allowlisting mechanism

13

Defense - Proactive

> Use program analysis (backward dataflow) to detect

reflection APl usages

o Track use of java.lang.Object get(java.lang.Object) and java.lang.Object
invoke(java.lang.Object,java.lang.Object[])

o Especifically if RDD instance is first parameter to this

o Note: JavaSecurityManager can't protect against get or invoke calls

> Utilized CryptoGuard

G K Po : invoke(obj, _), X : Xisan RDD, V : {v;} | vi~ po, Vi€ [1,|V]]
nvoke
Block if x € V then true else false if x € V then true else false
if Get or Invoke then true else false

tpo : get(obj), X : Xisan RDD, V : {v;} | vi = po, Vi€ [1,|V]] P
e ’

Figure 1: Blocking the use of reflection on RDD objects. Here, V| ~» Do represents an influence of an object V; on the program
point po. V represents the set of all such objects.

14

https://dl.acm.org/doi/10.1145/3319535.3345659

Defense - Reactive

> Enable a Security Manager that restricts method calls
o accessDeclaredMembers
o suppressAccessChecks
o newProxyInPackage

> Analyze call trace to

o findif acall generated from user submitted code

15

Execution time (sec)

Evaluation - Access Control Overhead

RQ: What is the overhead of policy enforcement?

HiBench benchmark execution time on scale profile large
Query 14 execution time

T T T
Base ——

i o - ~ i 2000 w \
600 B AJ instrumentﬁi{)glinj:rmi%r;éagtll‘ici;l @ % yl?ogréf?rgseknilggt
~ Phone masking with security manager
400 | i e CSSST Phone and comment masking
3 1500 |
200 ﬁ 1 Py
UMmER] £ 1l
0 ; Z 1000 | §
B ST AP T R S
ST S :
& &I S g
SISO X500 |
$ > P e KN S o
5&0 S H v & &
6{0’ % S = %o‘bx
O N XN
40 50
TPCH Query 14
HiBench Workload

> Policy overhead is highly policy dependent
> Average overhead 4% on TPCH query with masking policy

> Paper contains many more experimental results

16
TEREEEEEEEEEE "EGGEGEHEEEESR

Evaluation - Proactive Analyzer

RQ: What are the common proactively detectable issues in spark
programs in the wild?

> Collected 2120 spark repositories from GitHub
> 637 were built using maven
> 417 were successfully built
> Found 247 analyzable jars
o Exclude uber-jars
> Found some issuesin 21 jars

o 12jarshad org.apache package
o /jarsuse Class.forName
o 8jars has networking calls

17

Questions?

Contacts

Fahad Shaon - fs@shaon.dev
Sazzadur Rahaman - sazz@cs.arizona.edu
Murat Kantarcioglu - murat@datasectech.com

OSS - https.//github.com/DataSecTech

