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Model Theft vs. Ownership Demonstration in ML

Al/ML models: Business advantage, Intellectual Property

Adversary compromises model confidentiality:

unauthorized redistribution or monetization of on device ML models

Proactive protection mechanisms:
Computation with encrypted models, secure hardware, deployment in cloud
Reactive Defenses (Defense by deterrence):

Ownership verification traces stolen copies of models back to original owner ,

Victim
model
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(Deep) Reinforcement Learning

Reinforcement Learning (RL): an agent continuously interacts with an environment to optimize its policyt™

Policy: Decision making strategy: m(a;|s¢):S —» A
Decided optimal action: 7; (s¢)

Optimal policy leads best average return from the task

Deep RL (DRL): Agent learns policies from high-dimensional inputs
RL defines the objective:
maximizes future reward
Deep Neural Networks (DNN) provides the mechanism:

approximates the policy

[1] Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT Press.
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Ownership Verification in DRL

Current methods!’2) adopt DNN model watermarking techniques

- Model watermarking embeds traceable information (watermark) to the model by either directly inserting it into model
parameters or adding unique knowledge into a small subset of the training set

[2]
Model watermarking in DRL requires
- modifying both the training process and the reward function e , hensed B
[ D -
- sending specific input states to start the verification process Vaetked ) %
R
]

' ¥
Initial State -—|_> @

_,State-action Sequences
<

DNN fingerprinting methods34 use individual or universal adversarial examples

e

since they can characterize decision boundary of classifiers

[1] Behzadan and Hsu (2019). Sequential Triggers for Watermarking of Deep Reinforcement Learning Policies

[2] Chen et al . (AAMAS 2021). Temporal Watermarks for Deep Reinforcement Learning Models

[3] Lukas et al. (ICLR 2019). Deep Neural Network Fingerprinting by Conferrable Adversarial Examples NO<KIA

[4] Peng et al. (CVF 2022). Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations BELL
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Adversarial Examples

[11

Adversarial perturbation is added into clean input

DNNII: Classifier is victim, incorrect label

I
- o

3 * iy
] sign(VoJ (0, 2,4)) L]

action taken: down action taken: noop
original input adversarial input

Universal adversarial masks: Single, minimum amount of perturbation r that fools victim model on almost all data pointst4

DRLI231: Policy is victim, sub-optimal action

- Constrained viae, ie, [|[r]|, < €

- Effectiveness of r measured via fooling rate, &, on a test set [5]

@ initial / source example

© minimum-distance block-box adversarial example

Adversarial examples can transfer between different DNN models A

@ maximum-confidence black-bax adversarial example

ce white-box example

A maxi 2 white-box ial example

trained for the same task!®!

== . - -- surrogate classifier f(x) used to craft black-box adversarial examples

target dassifier £ (x) used to craft white-box adversarial examples

[1] Szegedy et al. (2013). Intriguing Properties of Neural Networks

[2] Huang et al. (2018). Adversarial Attacks on Neural Network Policies

[3] Gleave et al. (ICLR 2020) Adversarial Policies: Attacking Deep Reinforcement Learning

[4] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations NO<KIA

[5] Demontis et al . (USENIX 2019) Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks BELL
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FLARE: Fingerprinting DRL Policies using Universal Adversarial
Masks

In DRL,
There is no 1-to-1 mapping between input state and the optimal action

Inserting individual adversarial states into a dynamic environment requires stopping the task

FLARE : The first fingerprinting method for DRL policies

B
»

computes non-transferable, universal adversarial masks that Verification
can transfer from victim to stolen policies but not independent policies state: Syer
verifies the true ownership of stolen model by measuring Stop the task and _
. . change state |« Action
the similarity of the changed behavior

information a. €A
1 Reward

Environment

Does not depend on any specific start state, optimal/sub-optimal actions

No need to stop the task, just a noise addition for a while
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FLARE: Adversary Model

Adversary (A4):
Aims to obtain/redistribute an illegal copy of the victim agent’s policy

Has access to a similar environment, computational capabilities

Attempts to evade/degrade effectiveness of possible ownership verification methods 573 f\ Q
. . L7 1%° ﬁ\ AN Evidence
Well-informed adversaries / Verifier |
!
. .
Verifier (Judge, Trusted third party, J): /0\ M
Has white-box access to victim policy, black-box access to suspected policies “ -
Can modify environment (add adversarial mask to input states) P$$
1 Iracy
f Policy

Victim Agent Adversary

NOKIA
BELL
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FLARE: Adversary Model

Effectiveness: Successful ownership verification of stolen models with high confidence

Integrity: Avoiding accidental accusations of independently trained policies
Robustness: Withstanding model modification and evasion attacks
Successful verification after model modification
Failed verification along with a noticeable decrease in

agent performance

Green: High AA stays at high value, successful verification
Blue: AA drops little, successful verification
Low AA, failed verification, agent performs poorly

Red: Low AA, failed verification, agent performs well
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FLARE: Methodology

o>
S

Fingerprint generation Fingerprint verification

Generate a maximum confidence but non-transferable,
universal masks r from randomly sampled states during
a single episode eps

|
I
|
|
Suspected policy g in deployment :
|
|

Observe 7, to estimate the time spent to finish the task

_ _ Add each fingerprint r to states
using my and independent models m;,i €1 gerp
Compute non-transferability score (nts) on another eps during time window in verification, save [s; +7];=;

) episodes, compute A4
AA(m;,mj, s,7) refers to action agreement & key P P

statistics that measures behavioral similarity Foreachr,if AA = 0.5, it's one supporting evidence

Add valid 7 into fingerprint list if both nts and fooling Final verdict is given by majority vote

rate &, are bigger than a threshold value Average AA gives confidence of verdict

1
|
|
|
1
|
|
|
1
|
|
v

—— =
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FLARE: Empirical Analysis

- Arcade Learning Environment!': Pong and Ms Pacman
- DRL algorithms (PyTorch, NVIDIA Quadro P5000): DDQN[, A2CBI PPOL4]
- 6 victim policies in total (similar performance as OpenAl Baselines)

- 5X3 independent policies (5 same algorithm are m;, rest mythers)

10 fingerprints for each my

Verification episodes window size M = min(100, len(eps))

] https://www.gymlibrary.dev/environments/atari

1 Mnih et al. (Nature 2015). Human-level Control Through Deep Reinforcement Learning I\O(lA
] Mnih et al. (ICML 2016). Asynchronous Methods for Deep Reinforcement Learning

]

[1
[2
[3
[4] Schulman et al. (2077). Proximal Policy Optimization Algorithms BELL
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Effectiveness and Integrity

FLARE
- can distinguish stolen policies from independent ones
while achieving high fooling rate and non-transferability score

- leads no accidental false accusation of independently trained models

Global decision threshold (AA > 0.5) is selected from ROC curves

Receiver Operating Characteristic (ROC) Curve

FLARE satisfies both effectiveness and
integrity requirements

True Positive Rate

—— Pang, ROC curve (AUC = 0.96)
== MsPacman, ROC curve (AUC = 0.90)
<+ Na skill fingerprint

0.0 [IIE Url 5‘6 EI‘ L0
False Positive Rate
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Fingerprint statistics

o
o

Pong
* oxXu & AC
" .+- % DON
" PPO
AA decision threshold for a single fingerprint
K nts Alosig Ahjng AAothers
Fooling rate (verification) (verification) (verification)
MsPacman
oxm
e +++
AA decision threshold for a single fingerprint
T v T T v
& nts Ahoig Al Alothers
Fooling rate (verification) (verification) (verification)
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Robustness against Model Modification Attacks

Table 1: Average lmpact AA and voting results (v:Stolen, X: [ndependent) for piracy policies that are 1) ﬁne tuned over a
d d d des. AA i d

° M ¢} d e | mo d |f| Ca t IoNn a tta C kS C h an ge th e d ecision while impact is averaged over 10 test episodes. ( : Successful verification with AA > 0.75, : Successful verification with
0.75 2 AA 2 0.50, : Failed verification with high impact > 0.4, : Failed verification with low impact < 0.4)
boundary of ML models
Game, DRL Fine-tuning, # of episodes Pruning and fine-tuning, pruning levels (%)
Fine-tuning!" and weight pruning® a0
. Ine-tuning*"* and weignt pruning method 50 100 200 25 50 75 90
Impact 0.0+0.0 0.0%0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0£0.0 1.0£0.0
l:);cg’ AA 095+0.14 095£0.14 094%0.10 | 0.94+0.14 0.91+0.25 0.67+£042 028+042
i ¢ t <04 Votes  10//0X  10//0X  10//0X | 10//0X 9IvVI1X 64X 317K
mpac (On average re urn) - ' Impact 0.0+ 0.0 0.0+0.0 0.0+ 0.0 0.0+0.0 0.8+0.0 1.0£0.0 1.0+ 0.0
ll))anIEJ AA 094005 089+014 090=0.17 [ 0.88x0.16 0.66=0.38 0.09+0.17 02704

Votes 10//0X 10//0X 91X 10//0X TVI3K 1//9X 37X

Impact 0.0+0.0 0.0%0.0 0.0+0.0 039+0.19 0.03£010 030+0.15 0.73£0.11

MsPacman, .\ (55006 0752029 062035 | 0714028 0.65+039 0724026 059+ 0.23

A2C

FLARElS rObUSt agalnst model Impact 0.79+0.11 0.83£002 087+0.03 | 0.79+£0.11 0.74+0.09 0.86+0.01 0.71+043

MsPacman,
oy . * AA 023+034 015025 0.16+031 | 035+044 0.00+0.01 0.59=046 042+ 042
modification attacks DON
Votes 248X 248X 0v//10 X 6v/4X 4706 X
Impact  0.85 % 0.11 0.51 = 0.08 057004 0.62£0.05 0.66%0.19
Mﬂ;"’;;’a“’ AA 043£036 011016 025+032 | 0.26£036 033£038 0312032 0.13£0.20
Votes 4716 X 0//10 X 3/1TX 3//7X 3//7X 4//6X 1//9X
[1] Razavian et al. (CVPR 2014). CNN Features off-the-shelf: an Astounding Baseline for Recognition NO<IA
[2] Han et al. (NeurIPS 2015). Learning both Weights and Connections for Efficient Neural Networks BELL
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Robustness against Well-informed Adversaries

Adversary can evade the verification by returning sub-optimal
actions randomly or detect adversarial states and try to recover
optimal (original) action

- AAstays at high values against these adversaries

- Final verdict do not change for good returns

Well informed adversaries can use adversarial training to make
stolen policies robust against adversarial attacks (& FLARE) [2]

FLARE is robust against evasion attacks

FLARE is not robust against adversarial training, but robust when it
is used with adversarially trained victim agents

[1] Lin et al. (2017). Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
[2] Oikarinen et al. (NeurIPS 2021). Robust Deep Reinforcement Learning through Adversarial Loss
13 © 2023 Nokia

Table 2: Average impact, AA and voting results for stolen
policies modified by RADIAL-DQN. Results are reported for
both the agent with the best performance during RADIAL-
DON (3rd column) and the final agent obtained after RADIAL-
DON finishes (4th column). AA is averaged on 10 verification

Jﬁm&m‘?
improved policy, : Successful verification with AA >
10.75, : Successful verification with 0.75 > AA > 0.50,
: Failed verification with high impact > 0.4, : Failed

verification with low impact < 0.4)

Game, DRL .
method Stats Best Agent  Final Agent
Pong, Impact  0.0=0.0 0.0 0.0
RADIAL-  AA 0.04+0.06  0.04%0.06
DON Votes | 0v/10X 07/ 10X
MsPacman, lmpact —0.16£0.03°  0.390.03
RADIAL-  AA 059=040  0.29+031
DON Votes 614X 416X
Pong, Impact  0.0=0.0 0.0 0.0
RADIAL-  AA 0842021  0.89+0.17
RDON  yotes 3v//2X 91X
MsPacman, lmpact 015004  0.55%0.06
RADIAL-  AA 061034  0.09+0.18
RDON Votes TI3K 1v/9X



Robustness against False Claims

Malicious accusers can produce fake fingerprints
to pass the ownership verification test against

alse claim with AA > 0.75,

policies with different perturbation constraint ¢ values. (The cases where a false claim succeeds are shown as follows:
: False claim with 0.75 > AA > 0.50)

independent (and victim) policies !

€ vs. AA (Votes)

0.1

0.2

0.5

0.49 + 0.49 (5 v/ 5 X)
0.38 + 0.45 (3 v/ 7 X)
0.37 + 0.45 (3 // 7 X)
0.07 £ 0.22 (1// 9 X)
0.68 + 0.42 (7 // 3 X)
0.59+ 0.38 (6 v/ 4 X)

0.40 = 0.49 (4 // 6 X)
0.30 £ 0.41 (3 /7 X)
0.33 £ 0.45 (3// 7 X)
0.05 £ 0.19 (1v/ 9 X)
0.76 = 0.38 (8 v/ 2 X)
0.59 + 0.38 (6 v/ 4 X)

0.40 +0.49 (4 /1 6 X)
0.28 +0.43 (3//7X)

0.40 +0.49 (4 // 6 X)
0.05 £0.19 (1 /79 X)

0.78 +0.39 (8 ¢/ 2 X)
0.52+0.41 (6 /7 4 X)

0.03 £0.05 (0 /10 X)
0.14 £ 0.21 (1//9 X)

0.14 = 0.29 (1 //9 X)
0.13 = 0.30 (2 ///8 X)

0.09 +0.22 (1 //9 X)
0.21 +0.36 (2 /8 X)

0.0+ 0.0 (0//10 X)
0.19 + 0.26 (2//8 X)

0.0 £0.0 (0 //10 X)
0.15 £ 0.29 (1v//9X)

0.0 £ 0.0 (0 /10 X)
0.24 £ 0.26 (3//7X)

Game, DRL method 0.05
Pong, Vv 0.45 %047 (5+//5X)
Verifier can reject the claim by A2C Toave 032:036(3//7X
Pong, Vv 0.37 +0.42 (4 // 6 X)
- checking the amount of perturbation e DQN  Tavg 001%018(1//9X)
Pong, V 0.56 £ 0.39 (5 SI5 X)
- Search for other independent policies (PPO) PPO  Zavg | 056%036(6//4X)
MsPacman, vV 0.00 + 0.00 (0 ¥/10 X)
A2C T oavg.  0.15+0.56(1+//9X)
MsPacman, vV 0.23 +0.36 (2+/8 X)
DOQN T, avg. 0.26 +0.24 (2//8 X)
MsPacman, V 0.190.18 (1//9X)
PPO T, avg. 0.10+0.11 (0 //10 X)

0.26 + 0.31 (3 /7 X)
0.50 £ 0.39 (5 ¥ /5 X)

0.38 £0.37 (4 v/ 6 X)
0.74 + 0.40 (8 /2 X)

0.07 +£0.21 (1//9X)
0.80 +0.20 (8 v//2 X)

FLARE is not susceptible to false claims with a simple additional countermeasure
on € and non-transferability check based on the DRL algorithm

[1] Liu et al. (https://arxiv.org/abs/2304.06607, 2023). False claims against Model Ownership Resolution.
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Universality vs. Transferability

Input space embeddings in DRL are not as separable as in DNN

In DRL, input states have spatio-temporal abstractions, and
policies are hierarchalll

UAPM (minimum-distance method) finds the smallest high-
sensitivity directions belonging to closest incorrect class

FLARE identifies spatially similar pockets that are distant from
each other in temporal dimension

ActionB

Action A

ActionC @Source sample
OUAP sample
@FLARE sample
— Boundary for victim policy
= = Boundary for modified policy

[1] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations
[2] Zahavy et al. (ICML 2016). Graying the black box: Understanding DQNs
15  © 2023 Nokia |

Can we find better fingerprints/adversarial examples
that break temporal abstractions?




Conclusion & Takeaways

FLARE: the first fingerprint mechanism that verifies the ownership of illegitimate DRL policies using
universal adversarial masks

FLARE satisfies
Effectiveness (100% action agreement on stolen policies),

Integrity (no false positives)

Robustness (successful verification of stolen policies when the impact on performance < 0.4)

The choice of universal adversarial mask method is crucial due to inherent characteristics of DRL policies

NO<IA
BELL
16 © 2023 Nokia LAR
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Universal Adversarial Perturbations

- Asingle, minimum amount of perturbation r that fools the victim model on almost all data points!"!
- Constrained viae, ie, [|[r]|, < € [11

- Effectiveness of r measured via fooling rate, §, on a test set

N
[2] L
- E
original action: R]GHT" |iuput st.atd i — |action taken: LEFT &
‘uni\-’(‘l‘sal adversarial perturbation
|original action: LEFTI |inp|1t statuj action taken: N()()P| (@) VGG-19 (€) GoogLeNet
[1] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations '\O( A
[2] Tekgul et al . (ESORICS 2022) Real-time Adversarial Perturbations against Deep Reinforcement Learning Policies: Attacks and Defenses BELL
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FLARE: Methodology

o>
S

Fingerprint generation Fingerprint verification

Generate a maximum confidence but non-transferable,
universal masks r from randomly sampled states during
a single episode eps

Suspected policy g in deployment

1
|
|
|
1
|
|
|
1
|
|
v

Observe 7, to estimate the time spent to finish the task

_ _ Add each fingerprint r to states
using my and independent models m;,i €1 Berp .
- during time window in verification, save [s; + r]{ZtHV
Compute non-transferability score on another eps

nts(r,eps) = 6y eps X max;ec (1 — AA(my ,m;,s,7)) episodes, compute A4
. _ F hr ifAA = 0.5, it ti id
AA refers to action agreement & key statistics that oreach | 5 ONE SUPPOTHINg evidence

measures behavioral similarity Final verdict is given by majority vote

—— =

t=N Average AA gives confidence of verdict
AA(m;, my,5,m) = 1y 2 15y (sp4m)=7(se+7)
t=0 —
Add valid r into fingerprint list 7o ~NL--__
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Robustness against Well-informed Adversaries ()

Adversary can evade the verification by:

Pong,A2C o Pong,DQN Pong,PPO o
- performing sub-optimal actions with a random action ratio =\ . w ® s *:'\P"":‘“ o
10 Ju -'._\.._\.__ ——f=== 10 10 o S
. . . 5 ~ 06 5 s .\\ 06 uE;
- detecting adversarial states and trying to recover the £ . . . g
optimal (original action) using a history of saved ol B edgram N[, 0 L8

_ g g = *;
[states + actions] B I S e e L T I I B S S R R e
Random action ratio Random action ratio Random action ratio
- detecting adversarial states and performing a random MsPacman,A2C . Mspacman,DQN . HsPacman, PO .
3000 N —— 3000 4 @\,_\-”, = —— 3000 7 ikl bkl ekl
. . I~ kY =
action to those inputs S 7 G Kk AN .,
2000 ¥ \\ . 2000 \\‘\ 2000 \‘\ %
L 5 Random action g N . 2
® randapm action ~ 04 S o4 ‘\\ -
——— Visual Foresight (VF)"] - = |, ~_ |, 1,2
. . 500 { — Retyrn ~ i 500 o ~J 500 \1
— VF + sub-optimal action o7 Aeton ogreemen o o o "
’ 2“F\andc?l('ln actigi ratio“ 100 ’ 20Rando‘ron acti;(; ratioeu - ’ 2‘]Randc?:n acti(;: ratioa(l 100

AA stays at high values, and the final verdict do
not change for good returns: FLARE is robust
against evasion attacks.

[1] Lin et al. (2017). Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight BELL
20 © 2023 Nokia | Nokiainternal use LABS



Robustness against Well-informed Adversaries (ll)

- Wellinformed adversaries can use adversarial training to make
stolen model robust against adversarial attacks (& FLARE)

. Stolen policy + RADIAL-DQNI

[1] Oikarinen et al. (NeurlPS 2021). Robust Deep Reinforcement Learning through Adversarial Loss

21

FLARE is not robust against adversarial training,
but robust when it is used with adversarially

trained victim agents.

© 2023 Nokia
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Table 2: Average impact, AA and voting results for stolen
policies modified by RADIAL-DOQN. Results are reported for
both the agent with a best performance during RADIAL-DON
(3rd column) and the final agent obtained after RADIAL-
DON finishes (4th column). AA is averaged on 10 verification
episodes and impact is averaged over 10 test episodes. (*:
improved policy, : Successful verification with A4 =
0.75, : Successful verification with 0.75 = A4 = 0.50,

: Failed verification with high impact = 0.5, : Failed

verification with low impact < 0.5)

Game, DRL .
method Stats Best Agent Final Agent
PDI.'Ig,, Impar_'t 0. = 0.0 00+=0.0
RADIAL- AA 0.4 £ 0006 0.04 £ 0.06
DON Votes | 04/ 10X 0sl 10X
MsPacman, Impar.‘t =0.16 + 0.03* 0.39 £ 0.03
RADIAL- AA 0.59 = (.40 0.29 = 0.31
DON Votes |GV I4X 106X
l’ong, Impar_'t 0. = 0.0 00+=0.0
RADIAL- AA 084 £ 0.21 0.89 £ 0,17
RDON Votes /12X a/I1x
MsPacman Impar_'t 015 = .04 0.55 = 0.06
RADIAL- AA 061 = 0354 0.09+0.18
RDON Voles FPIEY ] 91X
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