FLARE: Fingerprinting Deep Reinforcement Learning Agents using Universal Adversarial Masks

Buse G. A. Tekgul (Nokia Bell Labs & Aalto University) N. Asokan (University of Waterloo & Aalto University)

07/12/2023

1 © 2023 Nokia

NOKIA BELL LABS

Model Theft vs. Ownership Demonstration in ML

AI/ML models: Business advantage, Intellectual Property

Adversary compromises model confidentiality: unauthorized redistribution or monetization of on device ML models

Proactive protection mechanisms:

- Computation with encrypted models, secure hardware, deployment in cloud Reactive Defenses (Defense by deterrence):
- Ownership verification traces stolen copies of models back to original owner

(Deep) Reinforcement Learning

Reinforcement Learning (RL): an agent continuously interacts with an environment to optimize its policy^[1]

- Policy: Decision making strategy: $\pi(a_t|s_t): S \to A$
- Decided optimal action: $\hat{\pi}_i(s_t)$
- Optimal policy leads best average return from the task

Deep RL (DRL): Agent learns policies from high-dimensional inputs

- RL defines the objective:
 - maximizes future reward
- Deep Neural Networks (DNN) provides the mechanism:
 - approximates the policy

Ownership Verification in DRL

Current methods^[1,2] adopt DNN model watermarking techniques

• Model watermarking embeds traceable information (watermark) to the model by either directly inserting it into model parameters or adding unique knowledge into a small subset of the training set

Model watermarking in DRL requires

- modifying both the training process and the reward function
- sending specific input states to start the verification process

DNN fingerprinting methods^[3,4] use individual or universal adversarial examples since they can characterize decision boundary of classifiers

[1] Behzadan and Hsu (2019). Sequential Triggers for Watermarking of Deep Reinforcement Learning Policies

[4] Peng et al. (CVF 2022). Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations

[2]

^[2] Chen et al . (AAMAS 2021). Temporal Watermarks for Deep Reinforcement Learning Models

^[3] Lukas et al. (ICLR 2019). Deep Neural Network Fingerprinting by Conferrable Adversarial Examples

^{4 © 2023} Nokia

Adversarial Examples

Adversarial perturbation is added into clean input DNN^[1]: Classifier is victim, incorrect label DRL^[2,3]: Policy is victim, sub-optimal action $+ .001 \times \mathbf{sign}(\nabla_x J(\theta, x, y))$ action taken: down original input

Universal adversarial masks: Single, minimum amount of perturbation r that fools victim model on almost all data points^[4]

- Constrained via ϵ , i.e., $||r||_p \leq \epsilon$
- Effectiveness of r measured via fooling rate, δ_r on a test set

Adversarial examples can transfer between different DNN models trained for the same task^[5]

[1] Szegedy et al. (2013). Intriguing Properties of Neural Networks

5

© 2023 Nokia

- [2] Huang et al. (2018). Adversarial Attacks on Neural Network Policies
- [3] Gleave et al. (ICLR 2020) Adversarial Policies: Attacking Deep Reinforcement Learning
- [4] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations

[5] Demontis et al. (USENIX 2019) Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

FLARE: Fingerprinting DRL Policies using Universal Adversarial Masks

In DRL,

- There is no 1-to-1 mapping between input state and the optimal action
- Inserting individual adversarial states into a dynamic environment requires stopping the task

FLARE : The first fingerprinting method for DRL policies

FLARE: Adversary Model

Adversary (A):

- Aims to obtain/redistribute an illegal copy of the victim agent's policy
- Has access to a similar environment, computational capabilities
- Attempts to evade/degrade effectiveness of possible ownership verification methods
- Well-informed adversaries

Verifier (Judge, Trusted third party, *J*):

- Has white-box access to victim policy, black-box access to suspected policies
- Can modify environment (add adversarial mask to input states)

FLARE: Adversary Model

Effectiveness: Successful ownership verification of stolen models with high confidence **Integrity:** Avoiding accidental accusations of independently trained policies **Robustness:** Withstanding model modification and evasion attacks

- Successful verification after model modification
- Failed verification along with a noticeable decrease in agent performance

Green: High AA stays at high value, successful verificationBlue: AA drops little, successful verificationYellow: Low AA, failed verification, agent performs poorlyRed: Low AA, failed verification, agent performs well

FLARE: Methodology

Fingerprint generation

 Generate a maximum confidence but non-transferable, universal masks r from randomly sampled states during a single episode eps

using π_V and independent models π_i , $i \in I$

- Compute non-transferability score (nts) on another *eps*
- $AA(\pi_i, \pi_j, s, r)$ refers to action agreement & key statistics that measures behavioral similarity
- Add valid r into fingerprint list if both nts and fooling rate δ_r are bigger than a threshold value

Fingerprint verification

- Suspected policy π_s in deployment
- Observe π_s to estimate the time spent to finish the task
- Add each fingerprint r to states during time window in verification, save $[s_t + r]_{t=i}^{t=i+N}$ episodes, compute AA
- For each r, if $AA \ge 0.5$, it's one supporting evidence
- Final verdict is given by majority vote
- Average AA gives confidence of verdict

FLARE: Empirical Analysis

- Arcade Learning Environment^[1]: Pong and Ms Pacman
- DRL algorithms (PyTorch, NVIDIA Quadro P5000): DDQN^[2], A2C^[3], PPO^[4]
 - 6 victim policies in total (similar performance as OpenAI Baselines)
 - 5X3 independent policies (5 same algorithm are π_I , rest π_{others})
- 10 fingerprints for each π_V
- Verification episodes window size $M = \min(100, len(eps))$

 ^{[1] &}lt;u>https://www.gymlibrary.dev/environments/atari/</u>
 [2] Mnih et al. (Nature 2015). Human-level Control Through Deep Reinforcement Learning

^[3] Mnih et al. (ICML 2016). Asynchronous Methods for Deep Reinforcement Learning

^[4] Schulman et al. (2017). Proximal Policy Optimization Algorithms

Effectiveness and Integrity

FLARE

- can distinguish stolen policies from independent ones
 while achieving high fooling rate and non-transferability score
- · leads no accidental false accusation of independently trained models

Global decision threshold ($AA \ge 0.5$) is selected from ROC curves

Robustness against Model Modification Attacks

- Model modification attacks change the decision boundary of ML models
 - Fine-tuning^[1] and weight pruning^[2]

 $Impact(on average return) \le 0.4$

FLARE is robust against model modification attacks

Table 1: Average impact, AA and voting results (\checkmark :Stolen, \checkmark : Independent) for piracy policies that are 1) fine-tuned over a different number of episodes and 2) pruned and then fine-tuned over 200 episodes. AA is averaged over 10 verification episodes, while impact is averaged over 10 test episodes. (\blacksquare : Successful verification with $AA \ge 0.75$, \blacksquare : Successful verification with $0.75 \ge AA \ge 0.50$, \blacksquare : Failed verification with high impact ≥ 0.4 , \blacksquare : Failed verification with low impact < 0.4)

Game, DRL	State	Fine-tuning, # of episodes		Pruning and fine-tuning, pruning levels (%)				
method	Stats	50	100	200	25	50	75	90
Pong, A2C	Impact	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	1.0 ± 0.0
	AA	0.95 ± 0.14	0.95 ± 0.14	0.94 ± 0.10	0.94 ± 0.14	0.91 ± 0.25	0.67 ± 0.42	0.28 ± 0.42
	Votes	10 🗸 / 0 🗶	10 🖌 / 0 🗶	10 🖌 / 0 🗶	10 🖌 / 0 🗶	9 🖌 / 1 🗶	6 ✔/ 4 X	3 🗸 / 7 🗶
Pong, DQN	Impact	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.8 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
	AA	0.94 ± 0.05	0.89 ± 0.14	0.90 ± 0.17	0.88 ± 0.16	0.66 ± 0.38	0.09 ± 0.17	0.27 ± 0.4
	Votes	10 🖌 / 0 🗶	10 🖌 / 0 🗶	9 ✔/1 X	10 🖌 / 0 🗶	7 🖌 / 3 🗶	1 🖌 / 9 🗶	3 🗸 / 7 🗶
Pong, PPO	Impact	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
	AA	0.88 ± 0.23	0.89 ± 0.25	0.88 ± 0.30	0.78 ± 0.35	0.67 ± 0.35	0.65 ± 0.41	0.71 ± 0.39
	Votes	9 ✔/1 X	9 ✔/1 X	9 ✔/1 X	7 🖌 / 3 🗶	7 🖌 / 3 🗶	6 ✔/ 4 X	7 🖌 / 3 🗶
MsPacman,	Impact	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.39 ± 0.19	0.03 ± 0.10	0.30 ± 0.15	0.73 ± 0.11
	AA	0.82 ± 0.16	0.75 ± 0.29	0.62 ± 0.35	0.71 ± 0.28	0.65 ± 0.39	0.72 ± 0.26	0.59 ± 0.23
	Votes	9 ✔/1 X	8 🖌 / 2 🗶	6 ✔/4 X	6 ✔/4 X	7 🖌 /3 🗶	8 ✔/2 X	6 ✔/4 X
MsPacman, DQN	Impact	0.79 ± 0.11	0.83 ± 0.02	0.87 ± 0.03	0.79 ± 0.11	0.74 ± 0.09	0.86 ± 0.01	0.71 ± 0.43
	AA	0.23 ± 0.34	0.15 ± 0.28	0.16 ± 0.31	0.38 ± 0.44	0.00 ± 0.01	0.59 ± 0.46	0.42 ± 0.42
	Votes	2 🖌 /8 🗶	1 🗸 /9 🗶	2 🖌 /8 🗡	4 ✔/6 🗙	0 ✔/10 ✗	6 ✔/4 X	4 ✔/6 🗙
	Impact	0.85 ± 0.11	0.40 ± 0.26	0.51 ± 0.08	0.52 ± 0.15	0.57 ± 0.04	0.62 ± 0.05	0.66 ± 0.19
MsPacman, PPO	AA	0.43 ± 0.36	0.11 ± 0.16	0.25 ± 0.32	0.26 ± 0.36	0.33 ± 0.38	0.31 ± 0.32	0.13 ± 0.20
	Votes	4 ✔/6 🗶	0 ✔/10 ✗	3 √ /7 X	3 ✔/ 7 X	3 🖌 / 7 🗶	4 ✔/ 6 X	1 🗸 / 9 🗶

© 2023 Nokia

12

Robustness against Well-informed Adversaries

Adversary can evade the verification by returning sub-optimal actions randomly or detect adversarial states and try to recover optimal (original) action

- AA stays at high values against these adversaries
- Final verdict do not change for good returns

Well informed adversaries can use adversarial training to make stolen policies robust against adversarial attacks (& FLARE)^[2]

FLARE is robust against evasion attacks

FLARE is not robust against adversarial training, but robust when it is used with adversarially trained victim agents

[1] Lin et al. (2017). Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
 [2] Oikarinen et al. (NeurIPS 2021). Robust Deep Reinforcement Learning through Adversarial Loss

Table 2: Average impact, AA and voting results for stolen policies modified by RADIAL-DQN. Results are reported for both the agent with the best performance during RADIAL-DQN (3rd column) and the final agent obtained after RADIAL-DQN finishes (4th column). AA is averaged on 10 verification episodes and impact is averaged over 10 test episodes. (`: improved policy, :: Successful verification with $AA \ge$ 0.75, :: Successful verification with $0.75 \ge AA \ge 0.50$, :: Failed verification with high impact ≥ 0.4 , :: Failed verification with low impact < 0.4)

Game, DRL method	Stats	Best Agent	Final Agent
Pong,	Impact	0.0 ± 0.0	0.0 ± 0.0
RADIAL-	AA	0.04 ± 0.06	0.04 ± 0.06
DQN	Votes	0 🖌 / 10 🗶	0 🖌 / 10 🗶
MsPacman,	Impact	$-0.16 \pm 0.03^{*}$	0.39 ± 0.03
RADIAL-	AA	0.59 ± 0.40	0.29 ± 0.31
DQN	Votes	6 ✔/ 4 X	4 🖌 / 6 🗶
Pong,	Impact	0.0 ± 0.0	0.0 ± 0.0
RADIAL-	AA	0.84 ± 0.21	0.89 ± 0.17
RDQN	Votes	8 🗸 / 2 🗶	9 🗸 / 1 🗶
MsPacman,	Impact	0.15 ± 0.04	0.55 ± 0.06
RADIAL-	AA	0.61 ± 0.34	0.09 ± 0.18
RDQN	Votes	7 🖌 / 3 🗶	1 🖌 / 9 🗶

Robustness against False Claims

Malicious accusers can produce fake fingerprints to pass the ownership verification test against independent (and victim) policies^[1]

Verifier can reject the claim by

- checking the amount of perturbation ϵ
- Search for other independent policies (PPO)

 Fable 3: A4 values (averaged over 10 verification episodes) and voting results for false claims against victim W and independent

 policies with different perturbation constraint ϵ values. (The cases where a false claim succeeds are shown as follows: === :

 alse claim with $AA \ge 0.75$, == : False claim with $0.75 \ge AA \ge 0.50$)

		ϵ vs. AA (Votes)					
Game, DRL method		0.05	0.1	0.2	0.5		
Pong,	V	$0.45 \pm 0.47 \ (5 \checkmark / 5 >)$	0.49 ± 0.49 (5 ✓/ 5 ✗)	0.40 ± 0.49 (4 ✓/ 6 ✗)	0.40 ± 0.49 (4 ✓/ 6 ✗)		
A2C	I, avg.	0.32 ± 0.36 (3 ✓/ 7 ✗)	$0.38 \pm 0.45 \; (3 \checkmark / 7 \times)$	$0.30 \pm 0.41 \; (3 \checkmark / 7 \times)$	0.28 ± 0.43 (3 ✓/ 7 ✗)		
Pong,	V	0.37 ± 0.42 (4 ✓/ 6 ✗)	0.37 ± 0.45 (3 ✓/ 7 ✗)	0.33 ± 0.45 (3 ✓/ 7 ✗)	0.40 ± 0.49 (4 ✓/ 6 ✗)		
DQN	\boldsymbol{I} , avg.	0.01 ± 0.18 (1 ✓/ 9 ✗)	0.07 ± 0.22 (1 ✓/ 9 ✗)	0.05 ± 0.19 (1 ✓/ 9 ✗)	$0.05 \pm 0.19 (1 \checkmark / 9 >)$		
Pong,	V	0.56 ± 0.39 (5 ✓/ 5 ✗)	0.68 ± 0.42 (7 ✓/ 3 ✗)	0.76 ± 0.38 (8 ✓/ 2 ✗)	0.78 ± 0.39 (8 ✓/ 2 ✗)		
РРО	I, avg.	$0.56 \pm 0.36 \ (6 \checkmark / 4 \varkappa)$	0.59 ± 0.38 (6 ✓/ 4 ✗)	0.59 ± 0.38 (6 ✓/ 4 ✗)	$0.52 \pm 0.41 \ (6 \checkmark / 4 \varkappa)$		
MsPacman,	V	$0.00 \pm 0.00 \ (0 \ \checkmark /10 \ \varkappa)$	0.03 ± 0.05 (0 ✓/10 ✗)	0.14 ± 0.29 (1 ✓/9 ✗)	0.09 ± 0.22 (1 ✓/9 ✗)		
A2C	I, avg.	0.15 ± 0.56 (1 ✓/9 ✗)	0.14 ± 0.21 (1 ✓/9 ✗)	0.13 ± 0.30 (2 ✓/8 ✗)	0.21 ± 0.36 (2 ✓/8 🗡)		
MsPacman,	V	0.23 ± 0.36 (2 ✓/8 ✗)	$0.0 \pm 0.0 \ (0 \ \checkmark /10 \ \varkappa)$	0.0 ± 0.0 (0 ✓/10 ✗)	$0.0 \pm 0.0 \ (0 \ \checkmark /10 \ \varkappa)$		
DQN	I, avg.	$0.26 \pm 0.24 \ (2\checkmark/8 \varkappa)$	$0.19 \pm 0.26 \ (2 \checkmark / 8 \varkappa)$	0.15 ± 0.29 (1√/9 ×)	$0.24 \pm 0.26 \; (3\checkmark/7\varkappa)$		
MsPacman,	V	0.19 ± 0.18 (1 ✓/ 9 ✗)	0.26 ± 0.31 (3 ✓/ 7 ✗)	0.38 ± 0.37 (4 ✓/ 6 ✗)	0.07 ± 0.21 (1 ✓/ 9 ✗)		
РРО	<i>I</i> , avg.	$0.10 \pm 0.11 \ (0 \checkmark /10 \varkappa)$	$0.50 \pm 0.39 (5 \checkmark /5 \times)$	0.74 ± 0.40 (8 ✓/2 ✗)	0.80 ± 0.20 (8 ✓/2 ✗)		

FLARE is not susceptible to false claims with a simple additional countermeasure on ϵ and non-transferability check based on the DRL algorithm

[1] Liu et al. (https://arxiv.org/abs/2304.06607, 2023). False claims against Model Ownership Resolution.

14 © 2023 Nokia

Universality vs. Transferability

- Input space embeddings in DRL are not as separable as in DNN
- In DRL, input states have spatio-temporal abstractions, and policies are hierarchal^[1]
- UAP^[1] (minimum-distance method) finds the smallest highsensitivity directions belonging to closest incorrect class
- FLARE identifies spatially similar pockets that are distant from each other in temporal dimension

[1] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations
 [2] Zahavy et al. (ICML 2016). Graying the black box: Understanding DQNs
 15 © 2023 Nokia

Can we find better fingerprints/adversarial examples that break temporal abstractions?

Conclusion & Takeaways

FLARE: **the first fingerprint mechanism that** verifies the ownership of illegitimate DRL policies using universal adversarial masks

FLARE satisfies

- Effectiveness (100% action agreement on stolen policies),
- Integrity (no false positives)
- Robustness (successful verification of stolen policies when the impact on performance ≤ 0.4)

The choice of universal adversarial mask method is crucial due to inherent characteristics of DRL policies

NOCIA BELL LABS

Additional Slides

Universal Adversarial Perturbations

- A single, minimum amount of perturbation r that fools the victim model on almost all data points^[1]
 - Constrained via ϵ , i.e., $||r||_p \leq \epsilon$

Nokia internal use

© 2023 Nokia

18

- Effectiveness of r measured via fooling rate, δ_r on a test set

FLARE: Methodology

Fingerprint generation

 Generate a maximum confidence but non-transferable, universal masks r from randomly sampled states during a single episode eps

using π_V and independent models π_i , $i \in I$

Compute non-transferability score on another eps

 $nts(r, eps) = \delta_{r, eps} \times max_{i \in I}(1 - AA(\pi_V, \pi_i, s, r))$

• *AA* refers to action agreement & key statistics that measures behavioral similarity

$$AA(\pi_i, \pi_j, s, r) = \frac{1}{N} \sum_{t=0}^{t=N} \mathbf{1}_{\hat{\pi}_i(s_t+r) = \hat{\pi}_j(s_t+r)}$$

• Add valid *r* into fingerprint list

Fingerprint verification

- Suspected policy π_s in deployment
- Observe π_s to estimate the time spent to finish the task
- Add each fingerprint r to states during time window in verification, save $[s_t + r]_{t=i}^{t=i+N}$ episodes, compute AA
- For each r, if $AA \ge 0.5$, it's one supporting evidence

Stolen or Not stolen

- Final verdict is given by majority vote
- Average AA gives confidence of verdict

Robustness against Well-informed Adversaries (I)

Adversary can evade the verification by:

- performing sub-optimal actions with a random action ratio
- detecting adversarial states and trying to recover the optimal (original action) using a history of saved [states + actions]
- detecting adversarial states and performing a random action to those inputs
 - Random action
 - Visual Foresight (VF)^[1]
 - VF + sub-optimal action

Robustness against Well-informed Adversaries (II)

- Well informed adversaries can use adversarial training to make stolen model robust against adversarial attacks (& FLARE)
- Stolen policy + RADIAL-DQN^[1]

FLARE is not robust against adversarial training, but robust when it is used with adversarially trained victim agents. Table 2: Average impact, AA and voting results for stolen policies modified by RADIAL-DQN. Results are reported for both the agent with a best performance during RADIAL-DQN (3rd column) and the final agent obtained after RADIAL-DQN finishes (4th column). AA is averaged on 10 verification episodes and impact is averaged over 10 test episodes. (*: improved policy, :: Successful verification with $AA \ge$ 0.75, :: Successful verification with 0.75 $\ge AA \ge$ 0.50, :: Failed verification with high impact \ge 0.5, :: Failed verification with low impact < 0.5)

Game, DRL method	Stats	Best Agent	Final Agent
Pong,	Impact	0.0 ± 0.0	0.0 ± 0.0
RADIAL-	AA	0.04 ± 0.06	0.04 ± 0.06
DQN	Votes	0 🖌 / 10 🗶	0 🖌 / 10 🗶
MsPacman,	Impact	$-0.16 \pm 0.03^{*}$	0.39 ± 0.03
RADIAL-	AA	0.59 ± 0.40	0.29 ± 0.31
DQN	Votes	6 🗸 / 4 🗶	4 ✔/ 6 X
Pong,	Impact	0.0 ± 0.0	0.0 ± 0.0
RADIAL-	AA	0.84 ± 0.21	0.89 ± 0.17
RDQN	Votes	8 🗸 / 2 🗶	9 🖌 / 1 🗶
MsPacman,	Impact	0.15 ± 0.04	0.55 ± 0.06
RADIAL-	AA	0.61 ± 0.34	0.09 ± 0.18
RDQN	Votes	7 🗸 / 3 🗶	9 🖌 / 1 🗶

[1] Oikarinen et al. (NeurIPS 2021). Robust Deep Reinforcement Learning through Adversarial Loss 21 © 2023 Nokia | Nokia internal use