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Model Theft vs. Ownership Demonstration in ML

AI/ML models: Business advantage, Intellectual Property

Adversary compromises model confidentiality: 

unauthorized redistribution or monetization of on device ML models

Proactive protection mechanisms: 

• Computation with encrypted models, secure hardware, deployment in cloud 

Reactive Defenses (Defense by deterrence): 

• Ownership verification traces stolen copies of models back to original owner

Software  & hardware 
vulnerabilities

Traceability

$$

Stolen 
model

Victim 
model

ML model 
watermarking, 
dataset inference, 
fingerprinting …
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(Deep) Reinforcement Learning

Reinforcement Learning (RL): an agent continuously interacts with an environment to optimize its policy[1]

• Policy: Decision making strategy: 𝜋 𝑎𝑡 𝑠𝑡): 𝑆 → 𝐴

• Decided optimal action: ො𝜋𝑖 𝑠𝑡

• Optimal policy leads best average return from the task

Deep RL (DRL): Agent learns policies from high-dimensional inputs

• RL defines the objective: 

• maximizes future reward 

• Deep Neural Networks (DNN) provides the mechanism:

• approximates the policy

Environment

Reward: 
𝑟𝑡+1

State: 𝑠𝑡+1 ∈ 𝑆

Action:
𝑎𝑡 ∈ 𝐴

Agent

[1] Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT Press. 
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0.65
0.20Policy



© 2023 Nokia4

Ownership Verification in DRL

Current methods[1,2] adopt DNN model watermarking techniques

• Model watermarking embeds traceable information (watermark) to the model by either directly inserting it into model 
parameters or adding unique knowledge into a small subset of the training set

Model watermarking in DRL requires 

• modifying both the training process and the reward function

• sending specific input states to start the verification process 

DNN fingerprinting methods[3,4] use individual or universal adversarial examples 

since they can characterize decision boundary of classifiers

[1] Behzadan and Hsu (2019). Sequential Triggers for Watermarking of Deep Reinforcement Learning Policies
[2] Chen et al . (AAMAS 2021). Temporal Watermarks for Deep Reinforcement Learning Models
[3] Lukas et al. (ICLR 2019). Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
[4] Peng et al. (CVF 2022). Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations

[2]
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Adversarial Examples

Adversarial perturbation is added into clean input

DNN[1]: Classifier is victim, incorrect label

DRL[2,3]: Policy is victim, sub-optimal action

Universal adversarial masks: Single, minimum amount of perturbation 𝑟 that fools victim model on almost all data points[4]

• Constrained via 𝜖,  i.e.,  ||𝑟|| 𝑝 ≤ 𝜖

• Effectiveness of 𝑟 measured via fooling rate, 𝛿𝑟 on a test set

Adversarial examples can transfer between different DNN models 

trained for the same task[5]

Nokia internal use

[2]

[5]

[1] Szegedy et al. (2013). Intriguing Properties of Neural Networks
[2] Huang et al. (2018). Adversarial Attacks on Neural Network Policies
[3] Gleave et al. (ICLR 2020) Adversarial Policies: Attacking Deep Reinforcement Learning
[4] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations
[5] Demontis et al . (USENIX 2019) Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

[1]
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FLARE: Fingerprinting DRL Policies using Universal Adversarial 
Masks
In DRL,

• There is no 1-to-1 mapping between input state and the optimal action

• Inserting individual adversarial states into a dynamic environment requires stopping the task

FLARE : The first fingerprinting method for DRL policies

• computes non-transferable, universal adversarial masks that

can transfer from victim to stolen policies  but not independent policies

• verifies the true ownership of stolen model by measuring 

the similarity of the changed behavior

Reward 
𝑟𝑡+1

Verification 
state: 𝑠𝑣𝑒𝑟

Action
𝑎𝑡 ∈ 𝐴

Stop the task and 
change state 
information

Does not depend on any specific start state, optimal/sub-optimal actions

No need to stop the task, just a noise addition for a while
Environment

Agent
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FLARE: Adversary Model

Adversary (A ):

• Aims to obtain/redistribute an illegal copy of the victim agent’s policy

• Has access to a similar environment, computational capabilities

• Attempts to evade/degrade effectiveness of possible ownership verification methods

• Well-informed adversaries

Verifier (Judge, Trusted third party, J ):

• Has white-box access to victim policy, black-box access to suspected policies

• Can modify environment (add adversarial mask to input states)

Evidence

Adversary

$$

Victim Agent

Victim 
Policy

Piracy 
Policy

Verifier
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FLARE: Adversary Model

Effectiveness: Successful ownership verification of stolen models with high confidence

Integrity: Avoiding accidental accusations of independently trained policies

Robustness: Withstanding model modification and evasion attacks

• Successful verification after model modification 

• Failed verification along with a noticeable decrease in 

agent performance

Green: High 𝐴𝐴 stays at high value, successful verification

Blue: 𝐴𝐴 drops little, successful verification 

Yellow: Low AA, failed verification, agent performs poorly

Red: Low AA, failed verification, agent performs well

Evidence

Adversary

$$

Victim Agent

Victim 
Policy

Piracy 
Policy

Verifier
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FLARE: Methodology

Fingerprint generation

• Generate a maximum confidence but non-transferable, 
universal masks 𝑟 from randomly sampled states during 
a single episode 𝑒𝑝𝑠

using 𝜋𝑉 and independent models 𝜋𝑖 , 𝑖 𝜖 𝐼

• Compute non-transferability score (nts) on another 𝑒𝑝𝑠

• 𝐴𝐴 𝜋𝑖 , 𝜋𝑗 , 𝑠, 𝑟 refers to action agreement & key 

statistics that measures behavioral similarity

• Add valid 𝑟 into fingerprint list if both nts and fooling 
rate 𝛿𝑟 are bigger than a threshold value 

Fingerprint verification

• Suspected policy 𝜋𝑠 in deployment

• Observe 𝜋𝑠 to estimate the time spent to finish the task

• Add each fingerprint 𝑟 to states 

during time window in verification, save [𝑠𝑡 + 𝑟]𝑡=𝑖
𝑡=𝑖+𝑁

episodes, compute 𝐴𝐴

• For each 𝑟, if 𝐴𝐴 ≥ 0.5, it’s one supporting evidence

• Final verdict is given by majority vote

• Average 𝐴𝐴 gives confidence of verdict

Stolen or Independent
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FLARE: Empirical Analysis

• Arcade Learning Environment[1]: Pong and Ms Pacman

• DRL algorithms (PyTorch, NVIDIA Quadro P5000): DDQN[2], A2C[3], PPO[4]

• 6 victim policies in total (similar performance as OpenAI Baselines)

• 5X3 independent policies (5 same algorithm are 𝜋𝐼 , rest 𝜋𝑜𝑡ℎ𝑒𝑟𝑠)

• 10 fingerprints for each 𝜋𝑉

• Verification episodes window size 𝑀 = min(100, 𝑙𝑒𝑛(𝑒𝑝𝑠))

[1] https://www.gymlibrary.dev/environments/atari/
[2] Mnih et al. (Nature 2015). Human-level Control Through Deep Reinforcement Learning
[3] Mnih et al. (ICML 2016). Asynchronous Methods for Deep Reinforcement Learning
[4] Schulman et al. (2017). Proximal Policy Optimization Algorithms

https://www.gymlibrary.dev/environments/atari/
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Effectiveness and Integrity

FLARE 

• can distinguish stolen policies from independent ones 

while achieving high fooling rate and non-transferability score

• leads no accidental false accusation of independently trained models

Global decision threshold (𝐴𝐴 ≥ 0.5) is selected from ROC curves

FLARE satisfies both effectiveness and 
integrity requirements
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Robustness against Model Modification Attacks

• Model modification attacks change the decision 
boundary of ML models

• Fine-tuning[1] and weight pruning[2]

𝐼𝑚𝑝𝑎𝑐𝑡(𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑡𝑢𝑟𝑛) ≤ 0.4

FLARE is robust against model 
modification attacks

[1] Razavian et al. (CVPR 2014). CNN Features off-the-shelf: an Astounding Baseline for Recognition
[2] Han et al. (NeurIPS 2015). Learning both Weights and Connections for Efficient Neural Networks
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Robustness against Well-informed Adversaries

Adversary can evade the verification by returning sub-optimal 
actions randomly or detect adversarial states and try to recover 
optimal (original) action

• 𝐴𝐴 stays at high values against these adversaries

• Final verdict do not change for good returns

Well informed adversaries can use adversarial training to make 
stolen policies robust against adversarial attacks (& FLARE) [2]

FLARE is robust against evasion attacks

FLARE is not robust against adversarial training, but robust when it 
is used with adversarially trained victim agents

[1] Lin et al. (2017). Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight

[2] Oikarinen et al. (NeurIPS 2021). Robust Deep Reinforcement Learning through Adversarial Loss 
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Robustness against False Claims

Malicious accusers can produce fake fingerprints 
to pass the ownership verification test against 
independent (and victim) policies [1]

Verifier can reject the claim by 

• checking the amount of perturbation 𝜖

• Search for other independent policies (PPO)

FLARE is not susceptible to false claims with a simple additional countermeasure 
on 𝜖 and non-transferability check based on the DRL algorithm

[1] Liu et al. (https://arxiv.org/abs/2304.06607, 2023). False claims against Model Ownership Resolution.

https://arxiv.org/abs/2304.06607
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Universality vs. Transferability

• Input space embeddings in DRL are not as separable as in DNN

• In DRL, input states have spatio-temporal abstractions, and 
policies are hierarchal[1]

• UAP[1] (minimum-distance method) finds the smallest high-
sensitivity directions belonging to closest incorrect class 

• FLARE identifies spatially similar pockets that are distant from 
each other in temporal dimension

[1] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations

[2] Zahavy et al. (ICML 2016). Graying the black box: Understanding DQNs

[1]

Can we find better fingerprints/adversarial examples 
that break temporal abstractions?

[2]
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Conclusion & Takeaways

FLARE: the first fingerprint mechanism that verifies the ownership of illegitimate DRL policies using 
universal adversarial masks

FLARE satisfies

• Effectiveness (100% action agreement on stolen policies), 

• Integrity (no false positives)

• Robustness (successful verification of stolen policies when the impact on performance ≤ 0.4)

The choice of universal adversarial mask method is crucial due to inherent characteristics of DRL policies



Additional Slides
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Universal Adversarial Perturbations

• A single, minimum amount of perturbation 𝑟 that fools the victim model on almost all data points[1]

• Constrained via 𝜖,  i.e.,  ||𝑟|| 𝑝 ≤ 𝜖

• Effectiveness of 𝑟 measured via fooling rate, 𝛿𝑟 on a test set

Nokia internal use

[1]

[2]

[1] Moosavi-Dezfooli et al. (CVPR 2017) Universal Adversarial Perturbations
[2] Tekgul et al . (ESORICS 2022) Real-time Adversarial Perturbations against Deep Reinforcement Learning Policies: Attacks and Defenses
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FLARE: Methodology

Fingerprint generation

• Generate a maximum confidence but non-transferable, 
universal masks 𝑟 from randomly sampled states during 
a single episode 𝑒𝑝𝑠

using 𝜋𝑉 and independent models 𝜋𝑖 , 𝑖 𝜖 𝐼

• Compute non-transferability score on another 𝑒𝑝𝑠

𝑛𝑡𝑠 𝑟, 𝑒𝑝𝑠 = 𝛿𝑟,𝑒𝑝𝑠 × 𝑚𝑎𝑥𝑖 ∈ 𝐼(1 − 𝐴𝐴(𝜋𝑉 , 𝜋𝑖 , 𝑠, 𝑟))

• 𝐴𝐴 refers to action agreement & key statistics that 
measures behavioral similarity

𝐴𝐴 𝜋𝑖 , 𝜋𝑗 , 𝑠, 𝑟 = ൗ1 𝑁෍

𝑡=0

𝑡=𝑁

𝟏ෝ𝜋𝑖 𝑠𝑡+𝑟 =ෝ𝜋𝑗 𝑠𝑡+𝑟

• Add valid 𝑟 into fingerprint list

Fingerprint verification

• Suspected policy 𝜋𝑠 in deployment

• Observe 𝜋𝑠 to estimate the time spent to finish the task

• Add each fingerprint 𝑟 to states 

during time window in verification, save [𝑠𝑡 + 𝑟]𝑡=𝑖
𝑡=𝑖+𝑁

episodes, compute 𝐴𝐴

• For each 𝑟, if 𝐴𝐴 ≥ 0.5, it’s one supporting evidence

• Final verdict is given by majority vote

• Average 𝐴𝐴 gives confidence of verdict

Nokia internal use

Stolen or Not stolen
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Robustness against Well-informed Adversaries (I)

Adversary can evade the verification by:

• performing sub-optimal actions with a random action ratio

• detecting adversarial states and trying to recover the 

optimal (original action) using a history of saved 

[states + actions]

• detecting adversarial states and performing a random 

action to those inputs

Nokia internal use

Random action

Visual Foresight (VF)[1]

VF + sub-optimal action

𝐴𝐴 stays at high values, and the final verdict do 
not change for good returns: FLARE is robust 

against evasion attacks.

[1] Lin et al. (2017). Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight 
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Robustness against Well-informed Adversaries (II)

• Well informed adversaries can use adversarial training to make 
stolen model robust against adversarial attacks (& FLARE)

• Stolen policy + RADIAL-DQN[1]

Nokia internal use

FLARE is not robust against adversarial training, 
but robust when it is used with adversarially 

trained victim agents.

[1] Oikarinen et al. (NeurIPS 2021). Robust Deep Reinforcement Learning through Adversarial Loss
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