
Log2Policy: An Approach to Generate Fine-Grained
Access Control Rules for Microservices from Scratch

Shaowen Xu1,2, Qihang Zhou1, Heqing Huang1, Xiaoqi Jia1,2, Haichao Du1,

Yang Chen1,2, Yamin Xie1

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of the Chinese Academy of Sciences

Microservices

• Applications are divided
into services.

• Services communicate
with each other by
remote procedure calls
(RPCs).

• Improve flexibility,
maintainability and
serviceability

But, new attack surface introduced.

Motivation

Can be solved by an ACCESS CONTROL mechanism!

Attackers can exploit vulnerabilities to take over a microservice and send arbitrary
requests to others!

Motivation

• It’s hard to apply access control rules manually
Error-prone, microservice system updates frequently;

• Generate access control rules automatically
• Documention based approaches

Low Coverity, coarse-grained;

• Source code based approaches

Attributes Limited, depending on the quality of code;

• Historical data based approaches

Unable to handle upgrade and generate from scratch;

Threat Model

• Test phase:
• Microservices are trustworthy.

• No attackers within the internal development team.

• Using TPM to secure boot.

• Production phase:
• Can be compromised.

• Attacks can send requests with arbitrary parameters to any microservice.

• Development team may update the microservice application.

• Out of scope
• Side-channel attacks.

• DoS attacks.

Log2Policy’s Goal

Provide a tool to generate fine-grained access control
rules for microservices applications from scratch and

update the rules rapidly.

Log2Policy’s Goal

Provide a tool to generate fine-grained access control
rules for microservices applications from scratch and

update the rules rapidly.

Rules
Generation

Policy
Updating

Rules Generation

Step-I: Data pre-processing
Sampling and handling missing values.

Step-II: Topology generation
A topological graph consists of service nodes,
version nodes, version edges and invocation edges.

Why we need Attributes Mining?

Variables exist in attributes.

Rule Generation

• Step-III: Attributes mining

Stirng matching or statistics

Lack flexibility, difficult to apply;

✓ Skip-gram + DBSCAN

NLP-based methods are widely used to analyze URLs.

Instances of variables can be regarded as synonyms.

• Step-IV: Policy optimization

• Istio don’t support regular expressions based
exact match.

• We propose to use Istio’s virtual service
mechanism.

The instances of variables have similar word
representation, and if words are clustered,
they will be clustered into the same cluster.

Policy Updating Design Goals

• Goal-1: Only analyze logs generated by newly updated services or
versions when upgrading access control rules.

• Goal-2: The system needs to be protected by the original
authorization policy when generating new logs.

Policy Updating
Version Removal
• Remove all associated versions;
• Update the topological graph;

Service Removal
• Remove all its versions;
• Update the topological graph;

Version Addition
• Istio’s traffic mirror mechanism;
• New version don’t affect the

original system;

Service Addition
• A free namespace;
• Collect logs;

Evaluation
• Microservices applications:

Book-info: a sample example microservice application provided by Istio.

Online-Boutique: e-commerce microservices application.

Sock Shop: e-commerce microservices application with relatively complex internal logic.

Pitstop: an event-driven microservice application with the main function of managing appointments.

Mesh demo: an e-commerce application with traffic control provided by Tencent Cloud.

• Environment:

Local environment: Minikube v1.24.0 with Kubernetes v1.22.3 and Istio v1.13.2;

Cloud mesh platform: Tencent Cloud with Kubernetes v1.22.5 and Istio v1.14.5 ;

Log analysis: Eight 4.20-GHz Intel(R) Core (TM) CPUs (i7-7700k) and 16GB of RAM;

Attributes mining: Pytorch and Sci-learn to implement algorithm, eight Intel Xeon Cascade Lake CPU (2.50-GHz), 32GB of RAM and an
NVIDIA T4 GPU;

Evaluation

1. Log2Policy generates access control rules based on logs, can it cover all the
normal behaviors of the microservice application?

2. Can Log2Policy generate access control rules from scratch? How is the quality
of the generated rules?

3. Can Log2Policy improve the efficiency when generating rules, especially when
access control policy needs to be upgraded?

• Collects the logs generated by microservices during the testing phase
• Use the test scripts provided by the applications to simulate the testing

behaviors
• Combine the test scripts of the microservices that interact with users with the

Locust framework.

Q1:
Log2Policy generates access control rules
based on logs, can it cover all the normal
behaviors of the microservice application?

• Request identification rate: 100%
• Attributes extraction rate: 100%
• Rules Coverage in large microservice application: 100%

Q2:
Can Log2Policy generate access control rules
from scratch? How is the quality of the
generated rules?

• All the attacks are blocked.
• All normal access is forwarded.

Q3:
Can Log2Policy improve the efficiency
when generating rules, especially when
access control policy needs to be
upgraded?

• Compared to AUTOARMOR, Log2Policy reduce at
least 59% analysis time.

• Log2Policy’s update mechanism increase at least
3.17 times of analysis speed compared to the
baseline.

Log2Policy

• Mine attributes from microservice
logs using the word2vec technique
and the DBSCAN algorithm.

• A mechanism for updating
microservice access control rules
based on traffic management.

• Evaluate Log2Policy with five real-
world microservice applications.

A tool can generate fine-grained

access control rules from scratch

based on access logs for

microservices applications.

Thanks!

xushaowen@iie.ac.cn

mailto:xushaowen@iie.ac.cn

