PSP-Mal: Evading Malware Detection via
Prioritized Experience-hased Reinforcement
Learning with Shapley Prior
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The reliability of malware detections receives challenges from
adversarial examples, where modified malware samples can
avoid detection by imposing subtle adversarial perturbations.
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« It is a complex task for the agent to modify the
malware to achieve evasion and obtain the final
reward, and it requires a large amount of useful
information to guide the agent’s training. However,

cha"enge there is alack of information available in the black-
box scenarios.

Environment

> —
« The action space designed by existing methods : :

contains excessive randomness, making it
difficult for the agent to accurately predict the
effects of the actions




The guidance information obtained from the SHAP approach is used as the
Shapley prior. By weighing transition utilized probability based on prior
knowledge, the prioritization replay mechanism can elevate the efficiency of the

experience utilization.
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The adversary aims at modifying the
malware sample to evade the static
Windows PE malware detector, i.e.,
causing the modified sample to be
labeled as benign.

EMBER: nine groups of features
extracted from 1.1 million PE files

SOREL-20M: a large-scale dataset
consisting of nearly 20 million files
collected from 2017 to 2019

we consider the black-box setting
where the adversary does not access
the internals of the target detector,
can only perform a limited number of
attempts and receive the prediction
confidence.

Model LightcBM™

Features Description

F1: Byte Histogram Byte histogram over the entire binary file.

F2: Byte Entropy Histogtrm The joint probability of byte value and local entropy.

F3: String Information Printable characters about strings.

F4: General File Information Basic information obtained from the PE header

F5: Header File Information Information extracted from header (Machine, linker, OS, etc.)
F6: Section Information Information of each sections (names, sizes, entropy, etc.)
F7: Imports Information Information about imported libraries and functions.

F8: Exports Information Information about exported functions.

F9: Data Directories Extracts size and virtual address of the first 15 data directories.




The same feature representation as
the malware detector is used as the
state space of the environment,
namely a 2381-dimensional feature
vector.

10, if evaded
fx(st.ar) = fx(s1), otherwise.

re(st.ar) = {
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Maodify Machine Type
Modity Timestamp
Modify Option header
Remove Debug
Break Checksum
Add Imports
Modify Section Name
Section Cave Append
Section Add
Overlay Append

M
M
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Maodify the machine type to one of candidates.

Modify the timestamp to one of candidates.

Modify the linker/iamge/operating system version.

Zero out the debug information in a binary.

Zero out the checksum value in the optional header.

Add import functions from one of candidates.

Modify the section name to a name of candidates.
Append bytes to the unused space at the end of a section.
Add a new section.

Appends bytes at the end of a binary.

We design a novel malware modifier in PSP-Mal, where actions
are considered a combination of item and content. The state and
policy determine the action item, while the content is sampled
from a data pool using Thompson sampling instead of random
generation.
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The average Shapley values k; for each
feature group g;are calculated as: DataDiretories
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Actions
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The sampling probability of transition ican be expressed as

Py
N |a’

P(i) =

In PSP-Mal, we redefine the metric for each transition priority by combining
the estimated Shapley prior value that reflects the expected effect of the
action with the TD error

p(t) = 1/rank (I57)| + ¢ - pepap (st- ar)).




Thompson sampling
within actions
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Choose action item
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Abhlation study
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Ablation study comparing vinilla D3QN to different versions of PSP-Mal.




Evasion
complex

for the
learning
converge.

algorithm to

detection is a
task, where the |
reward for each action may |
be very sparse until the |
evasive malware sample is |
obtained, making it difficult |
reinforcement |

The agent needs to explore
the state space to collect
informative  experiences.
|deally, the adversary uses
the output of the detector’s
feature extractor as the
state space. However, this
Is difficult to achieve in
black-box scenarios.

For PSP-Mal, since the
attack tends to employ
additive actions to modify
the file,the defender can
check if slack bytes are
modified or the file s
padded with a large number
of unexecuted bytes.
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