
Yu Zheng*, Qizhi Zhang*, Sherman S. M. Chow
Yuxiang Peng, Sijun Tan, Lichun Li, Shan Yin

1

Secure Softmax/Sigmoid for 
Machine-learning 

Computation

Annual Computer Security Applications Conference 2023

Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023



▪ Secure Machine Learning Background
▪ Secret share: 2 computing parties         + 1 commodity server 
▪ Against semi-honest adversary

Rundown

2Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023



▪ Secure Machine Learning Background
▪ Secret share: 2 computing parties         + 1 commodity server 
▪ Against semi-honest adversary

▪ Non-Linearity Challenges and Sigmoid/Softmax in Crypto
▪ New Protocols for Nonlinear Functions

▪ Local-sigmoid via Fourier series
▪ Quasi-softmax via ordinary differential equation

Rundown

3Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023



▪ Secure Machine Learning Background
▪ Secret share: 2 computing parties         + 1 commodity server 
▪ Against semi-honest adversary

▪ Non-Linearity Challenges and Sigmoid/Softmax in Crypto
▪ New Protocols for Nonlinear Functions

▪ Local-sigmoid via Fourier series
▪ Quasi-softmax via ordinary differential equation

▪ Experiments and System Performance
▪ Conclusion

Rundown

4Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023



Secure Softmax/Sigmoid for Machine-learning Computation

▪ Machine learning attains great performance
▪ Privacy concerns over sensitive data, e.g., health, finance.

Secure Machine Learning

7th December 2023 5



Secure Softmax/Sigmoid for Machine-learning Computation

▪ Machine learning attains great performance
▪ Privacy concerns over sensitive data, e.g., health, finance.
▪ Most SML frameworks support simpler inference tasks

▪ LLAMA [PoPets’22], GForce [Usenix Sec’21], SiRNN [S&P’21], 
CryptFlow2 [CCS’20], etc.

Secure Machine Learning

7th December 2023 6



Secure Softmax/Sigmoid for Machine-learning Computation

▪ Machine learning attains great performance
▪ Privacy concerns over sensitive data, e.g., health, finance.
▪ Most SML frameworks support simpler inference tasks

▪ LLAMA [PoPets’22], GForce [Usenix Sec’21], SiRNN [S&P’21], 
CryptFlow2 [CCS’20], etc.

▪ Training is more complicated to do with cryptography
▪ It produces fluctuating computation results.
▪ It requires non-linear computation such as those in activation layers.
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▪ Crypto. excels primarily with finite fields and linear functions.
▪ Accuracy: expand finite field to cater to fluctuating ranges. 

▪ But, increase computational & communication overheads.
▪ Secure protocols for exact computation of non-linearity are known to 

be heavyweight.
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▪ Crypto. excels primarily with finite fields and linear functions.
▪ Accuracy: expand finite field to cater to fluctuating ranges. 

▪ But, increase computational & communication overheads.
▪ Secure protocols for exact computation of non-linearity are known to 

be heavyweight.
▪ Not until recently, start to have secure training frameworks.

▪ CrypTen [NeurIPS'21], CryptGPU [S&P’21], Piranha [Usenix Sec’22], etc.
▪ Support more complex activation, including softmax and sigmoid.
▪ Achieve high computational performance over AlexNet (60M param) 
and VGG-16 (138M param) .

Crypto. Challenges in Secure Training 
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▪ However, large communication overhead persists as a 
major concern.

▪ Prominently, Piranha, a GPU platform for secure computation,   
reports 94%+ of the training time consumed by communication         
in a wide-area network (WAN) setting.

Communication Bottleneck

10Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023



▪ However, large communication overhead persists as a 
major concern.

▪ Prominently, Piranha, a GPU platform for secure computation,   
reports 94%+ of the training time consumed by communication         
in a wide-area network (WAN) setting.

▪ Informally, sigmoid/softmax combine ex ,1/x, or Σex.
▪ ex and 1/x are unbounded and continuous.

Communication Bottleneck

11Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023



▪ However, large communication overhead persists as a 
major concern.

▪ Prominently, Piranha, a GPU platform for secure computation,   
reports 94%+ of the training time consumed by communication         
in a wide-area network (WAN) setting.

▪ Informally, sigmoid/softmax combine ex ,1/x, or Σex.
▪ ex and 1/x are unbounded and continuous.

▪ Securely computing them with efficiency is challenging.
▪ Existing works either separately approximate or replace them.
▪ Below, we detail secure sigmoid and softmax one by one. 

Communication Bottleneck
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▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1]. 
▪ Binary classification.
▪ It squashes any input to a value in (0,1).

State-of-The-Art Secure Sigmoid
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▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1]. 
▪ Binary classification.
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.
▪ x + 0.5 for |x|< 0.5; x = 0 or x = 1.
▪ Requires comparison to identify pieces.
▪ Relatively inaccurate approx. near to 0.

State-of-The-Art Secure Sigmoid
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▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1]. 
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.

▪ Chebyshev polynomial
▪ [CCS'21 Workshop]
▪ Linear to #iterms
▪ Possibly result in gradient explosion 

State-of-The-Art Secure Sigmoid
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▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1]. 
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.

▪ Chebyshev polynomial [CCS'21 workshop]
▪ How about their communication costs?

State-of-The-Art Secure Sigmoid

Protocol Offline (bits) Online (bits) Overall (bits) Round
ABY-series -          ～800 -    5

Polyn. (5,8) 320 ～ 512 1280 ～ 2048 1600 ～ 2560    1
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Protocol Offline (bits) Online (bits) Overall (bits) Round
ABY-series -          ～800 -    5

Polyn. (5,8) 320 ～ 512 1280 ～ 2048 1600 ～ 2560    1

Can we expect <40 bits online in 1 round?



▪ Local-Sigmoid definition.
▪ Sigmoid in [-a, a].
▪ High accuracy in range.
▪ Bounded error out of range 

New Sigmoid Approx. and Protocol 
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▪ Local-Sigmoid definition.
▪ Sigmoid in [-a, a].
▪ High accuracy in range.
▪ Bounded error out of range 

▪ Fourier approximation.
▪ LSig(x) = a + bsin(xk).
▪ Mask t, shared value Δ = x-t.
▪ No secure comparison is required.
▪ sin(Δ + t) =  sin(Δ)cos(t) + cos(Δ)sin(t)

New Sigmoid Approx. and Protocol 
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▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1.
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]

New Sigmoid Approx. and Protocol 
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▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1.
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.

New Sigmoid Approx. and Protocol 
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▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.
▪ P0 and P1 locally compute sin(Δk), cos(Δk)
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▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.
▪ P0 and P1 locally compute sin(Δk), cos(Δk).

▪Secret-shared outputs
▪ P0 gets  a + b(sin(Δk)[v]0+ cos(Δk)[u]0).
▪ P1 gets  a + b(sin(Δk)[v]1+ cos(Δk)[u]1).

New Sigmoid Approx. and Protocol 
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▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.
▪ P0 and P1 locally compute sin(Δk), cos(Δk).

▪Secret-shared outputs 
▪ P0 gets  a + b(sin(Δk)[v]0+ cos(Δk)[u]0).
▪ P1 gets  a + b(sin(Δk)[v]1+ cos(Δk)[u]1).

▪ What are [u]0,[v]0,[t]0  and [u]1,[v]1,[t]1?

New Sigmoid Approx. and Protocol 
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▪What are [u]0,[v]0,[t]0  and [u]1,[v]1,[t]1?
▪ sin(tk) = [u]0 + [u]1; cos(tk) = [v]0 + [v]1; t = [t]0 + [t]1
▪ Randomness independent to private x.
▪ Generated by a crypto commodity server.
▪ In a pre-computation phase offline.

New Sigmoid Approx. and Protocol 
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▪What are [u]0,[v]0,[t]0  and [u]1,[v]1,[t]1?
▪ sin(tk) = [u]0 + [u]1; cos(tk) = [v]0 + [v]1; t = [t]0 + [t]1
▪ Randomness independent to private x.
▪ Generated by a crypto commodity server.
▪ In a pre-computation phase offline.

▪Optimize offline communication?
▪ Use PRF with a synchronized counter.
▪     &P0 generate [u]0,[v]0,[t]0 using the same key0. 
▪     &P1 generate [t]1 using the same key1. 
▪      computes and sends [u]1,[v]1 to P1. 

New Sigmoid Approx. and Protocol 
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▪Achieved < 40bits online in 1 round!

Communication Costs

27Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Protocol Offline (bits) Online (bits) Overall (bits) Round
ABY-series         -          ～800           -    5

Polyn. (K=5,8) 320 ～ 512 1280 ～ 2048 1600 ～ 2560    1
Ours (m=4, K=5)             640               36               676    1
Ours (m=4, K=8)           1024               36              1060    1
Ours (m=5, K=5)             640               38                678    1
Ours (m=5, K=8)           1024               38              1062    1



▪ Softmax(x) = ez_i/(Σez_j) :  Rm ↦ [0, 1]m. 
▪ It squashes any input vector to a probability vector.
▪ Multi-classification.

State-of-The-Art Secure Softmax
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▪ Softmax(x) = ez_i/(Σez_j) :  Rm ↦ [0, 1]m. 
▪ It squashes any input vector to a probability vector.

▪Crypten [NeurIPS’22] follows exact computation.
▪ It requires secure maximum, exponentiation, and division.
▪ Secure maximum takes O(log m) rounds for removing the largest 

input and mitigating overflow of ez_i and Σez_j.

State-of-The-Art Secure Softmax
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▪ Softmax(x) = ez_i/(Σez_j) :  Rm ↦ [0, 1]m. 
▪ It squashes any input vector to a probability vector.

▪Crypten [NeurIPS’22] follows exact computation.
▪ It requires secure maximum, exponentiation, and division.
▪ Secure maximum takes O(log m) rounds for removing the largest 

input and mitigating overflow of ez_i and Σez_j.
▪ASM protocol replaces exponential function with ReLU.

▪ It is adopted in SecureNN [PoPETS’19], Falcon [PoPETS’21].
▪ It relies on manual efforts in tuning the model [Keller and Sun, 

ICML’22].

State-of-The-Art Secure Softmax
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▪How about their communication costs?

State-of-The-Art Secure Softmax
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Protocol      #Class Online (bits) Overall (bits) Round
ASM protocol         10          -      3M    704

ASM protocol         100          -      30M    704
ASM protocol         1000          -      302M    704
Crypten         10      783250      982K    171
Crypten         100      8536390      11M    300
Crypten         1000      86067790      108M    430



▪How about their communication costs?

State-of-The-Art Secure Softmax
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Protocol      #Class Online (bits) Overall (bits) Round
ASM protocol         10          -      3M    704

ASM protocol         100          -      30M    704
ASM protocol         1000          -      302M    704
Crypten         10      783250      982K    171
Crypten         100      8536390      11M    300
Crypten         1000      86067790      108M    430

Can we expect <10% communication costs 
in <35 rounds?



▪Formulate Quasi-Softmax (QSMax) capturing probability 
distribution of softmax's outputs.

New Softmax Approx. and Protocol 
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▪Formulate Quasi-Softmax (QSMax) capturing probability 
distribution of softmax's outputs.

▪For an input vector x and iteration step r, we instantiate a 
vector function QSMax g(), which is an ordinary differential 
equation solved by Euler formula.

▪ g(0) = [1/m, ... , 1/m]
for i  = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r
▪g(r/r) = g(1), iteratively limits to real softmax.

New Softmax Approx. and Protocol 
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▪Formulate Quasi-Softmax (QSMax) capturing probability 
distribution of softmax's outputs.

▪For an input vector x and iteration step r, we instantiate a 
vector function QSMax g(), which is an ordinary differential 
equation solved by Euler formula.

▪ g(0) = [1/m, ... , 1/m]
for i  = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r
▪g(r/r) = g(1), iteratively limits to real softmax.
▪ Notably, loop function contains only two multiplications and additions.
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▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

New Softmax Approx. and Protocol 
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▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

New Softmax Approx. and Protocol 
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▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.

New Softmax Approx. and Protocol 
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▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.

New Softmax Approx. and Protocol 
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▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.

New Softmax Approx. and Protocol 
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▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions. 

New Softmax Approx. and Protocol 
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▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions.
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▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions. 
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▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i  = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions. 

▪ Secret-shared outputs. 
▪ P0 gets [g(1)]0.
▪ P1 gets [g(1)]0.

New Softmax Approx. and Protocol 
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[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[p]0= [x]0 - [q]0

[p]1= [x]1 - [q]1

[g((i-1)/r)]0 + [t]0

[g((i-1)/r)]1 + [t]1

r = 16



▪Achieved < 10% communication costs in 32 rounds!

Communication Costs
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Protocol      #Class Online (bits) Overall (bits) Round
ASM protocol         10          -            3M    704
Crypten         10      783K         982K    171
Ours         10        63K           84K      32
ASM protocol         100          -           30M    704
Crypten         100      8.5M           11M    300
Ours         100      616K         821K      32
ASM protocol         1000          -         302M    704
Crypten         1000       86M         108M    430
Ours         1000         6M             8M      32



▪ Datasets: MNIST, CIFAR-10 
▪ Models: AlexNet, LeNet, VGG-16, ResNet, Networks A-B-C-D.
▪ Communication reduces by 57%-77%.
▪ Accuracy 

▪ reaches a higher accuracy for AlexNet, VGG-16 compared with 
Piranha [Usenix Sec'22].

▪ reaches a similar accuracy for Networks A-B-C-D compared with 
SPDZ-QT [Keller and Sun, ICML'22].

▪ Training time
▪ 10%-60% speed-up in LAN & 56%-78% speed-up in WAN.

Experiments & System Performance
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▪ Propose two cryptography-friendly approximations for secure 
computation of softmax and sigmoid, leading to expedited 
private training with much lower communication.

▪ Provide both C++ & Python implementation for different 
programming preference.

▪ Shed light on protocol design for bounded nonlinear functions, 
avoiding unbounded intermediate functions (ex, 1/x).

▪ Extend the realm of secure computation to encompass solutions 
for differential equations with rational polynomial or trigonometric 
functions coefficients.

Conclusion
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