Annual Computer Security Applications Conference 2023

Secure Softmax/Sigmoid for
Machine-learning
Cemputetign

Yu Zheng*, Qizhi Zhang*, Sherman S. M. Chow
Yuxiang Peng, Sijun Tan, Lichun Li, Shan Yin

1;‘ 5 2 The Chinese University of Hong Kong ANT GROUP

e A

% £

> B

3 %

3 s l

3 £ II ebvance
A ‘\f

&

”923\)

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Rundown

-Secure Machine Learning Background
= Secret share: 2 computing parties @ + 1 commodity server
= Against semi-honest adversary

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Rundown

-Secure Machine Learning Background
= Secret share: 2 computing parties @ + 1 commodity server
= Against semi-honest adversary
g Challenges and Sigmoid/Softmax in Crypto
- New Protocols for Nonlinear Functions
= Local-sigmoid via Fourier series
= Quasi-soffmax via ordinary differential equation

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Rundown

-Secure Machine Learning Background
= Secret share: 2 computing parties @ + 1 commodity server
= Against semi-honest adversary

g Challenges and Sigmoid/Softmax in Crypto

- New Protocols for Nonlinear Functions
= Local-sigmoid via Fourier series
= Quasi-soffmax via ordinary differential equation

- Experiments and System Performance
= Conclusion

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Secure Machine Learning

*Machine learning attains great performance
= Privacy concerns over sensitive data, e.g., health, finance.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Secure Machine Learning

*Machine learning attains great performance
= Privacy concerns over sensitive data, e.g., health, finance.

- Most SML frameworks support simpler inference tasks

wveer LLAMA [PoPets'22], GForce [Usenix Sec'21], SiRNN [S&P'21],
n’s CryptFlow2 [CCS'20], etc.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Secure Machine Learning

*Machine learning attains great performance
= Privacy concerns over sensitive data, e.g., health, finance.

- Most SML frameworks support simpler inference tasks

wveer LLAMA [PoPets'22], GForce [Usenix Sec'21], SiRNN [S&P'21],
n’s CryptFlow2 [CCS'20], etc.

= Training is more complicated to do with cryptography
= |t produces fluctuating computation results.
- It requires non-linear computation such as those in activation layers.

Crypto. Challenges in Secure Training

- Crypto. excels primarily with finite fields and linear functions.
= Accuracy: expand finite field to cater to fluctuating ranges.
- But, increase computational & communication overheads.

- Secure protocols for exact computation of non-linearity are known to
be heavyweight.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 8

Crypto. Challenges in Secure Training

- Crypto. excels primarily with finite fields and linear functions.
= Accuracy: expand finite field to cater to fluctuating ranges.
- But, increase computational & communication overheads.

- Secure protocols for exact computation of non-linearity are known to
be heavyweight.

- Not until recently, start to have secure training frameworks.
% CrypTen [NeurlPS'21], CryptGPU [S&P'21], Piranha [Usenix Sec’'22], etc.
-Support more complex activation, including softmax and sigmoid.

- Achieve high computational performance over AlexNet (60M param)
and VGG-16 (138M param) .

Communication Bottleneck

However, large communication overnead persists as a
major concern.

- Prominently, Piranha, a GPU platform for secure computation,
reports 94%+ of the fraining time consumed by communication
in a wide-area network (WAN) setting.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Communication Bottleneck

However, large communication overnead persists as a
major concern.

- Prominently, Piranha, a GPU platform for secure computation,
reports 94%+ of the fraining time consumed by communication
in a wide-area network (WAN) setting.

- Informally, sigmoid/softmax combine e*,1/x, or ie*,
= eXand 1/x are unbounded and continuous.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Communication Bottleneck

However, large communication overnead persists as a
major concern.

- Prominently, Piranha, a GPU platform for secure computation,
reports 94%+ of the fraining time consumed by communication
in a wide-area network (WAN) setting.

- Informally, sigmoid/softmax combine e*,1/x, or ie*,
- e*and 1/x are unbounded and continuous.
= Securely computing them with efficiency is challenging.

- Existing works either separately approximate or replace them.
- Below, we detail secure sigmoid and soffmax one by one.

State-of-The-Art Secure Sigmoid

-Sigmoid(x) = eX/(eX + ‘|) : (_inf, +inf) > [O, 1]. Diminishing GrladientZone
= Binary classification. oy
- It squashes any input to a value in (0,1).

[

Active Gradient Zone

*Figure is from Google image.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 13

State-of-The-Art Secure Sigmoid

-Singid(X) - eX/(eX +]) . (—inf, +inf) = [O, 1]. Diminishing GrladientZone
= Binary classification. 1 ' ‘
- It squashes any input to a value in (0,1).

= ABY-series protocols [CCS'18, Usenix Sec'21].
= Plecewise linear approx. |
= x+0.5for [x|<05 x=00rx=1.
= Requires comparison to identify pieces. |
- Relatively inaccurate approx. nearto 0.-6 -4 -2 o 2 4 6

Active Gradient Zone

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 14

State-of-The-Art

Secure Sigmoid

- Sigmoid(x) = e*/(e* + 1) : (-inf, +inf) » [0, 1].
- |t squashes any input to a value in (0,1).
= ABY-series protocols [CCS'18, Usenix fo“"m

= Plecewise linear approx.

« Chebyshev polynomial
= [CCS'21 Workshop]
= Linear to #iterms

- Possibly result in gradient e%s'\g‘ﬂ —

7th December 2023

| —— sigmoid poly

—— original sigmoid
-~ sigmoid fourier

——- sigmoid linear

e

~10 -5

Secure Soffmax/Sigmoid for Machine-learning Computation

0

5

10

15

State-of-The-Art Secure Sigmoid

- Sigmoid(x) = e*/(e* + 1) : (-inf, +inf) » [0, 1].

- |t squashes any input to a value in (0,1).

= ABY-series protocols [CCS'18, Usenix Sec'21].

= Plecewise linear approx.

« Chebyshev polynomial [CCS"21 workshop]
= How about their communication costse

Protocol Offline (bits) | Online (bits) | Overall (bits) | Round
ABY-series - ~800 - 5
Polyn. (5,8) | 320 ~ 512 1280 ~ 2048 1600 ~ 2560 1

7th December 2023

Secure Soffmax/Sigmoid for Machine-learning Computation

State-of-The-Art Secure Sigmoid

- Sigmoid(x) = e*/(e* + 1) : (-inf, +inf) » [0, 1].
- |t squashes any input to a value in (0,1).

round?

online in

Protocol Offline (bits) | Online (bits) | Overall (bits) | Round
ABY-series - ~800 - 5
Polyn. (5,8) | 320 ~ 512 1280 ~ 2048 1600 ~ 2560 1

7th December 2023

Secure Soffmax/Sigmoid for Machine-learning Computation

New Sigmoid Approx. and Protocol

= Local-Sigmoid definition.

Sigmoid Function and Its Derivative

= Sigmoid in [-a, a].
= High accuracy in range.

- Bounded error out of range

*Figure is from Google image.

7th December 2023

101 — otx)
— folx)

0.8 1

0.6 1

0.4 { Saturating

Derivative
Closeto 0

0.2 1

0.0 1

|

Saturating

Derivative
Close to 0

Secure Soffmax/Sigmoid for Machine-learning Computation

New Sigmoid Approx. and Protocol

Sigmoid Function and Its Derivative

= Local-Sigmoid definition.

= Sigmoid in [-a, a].
= High accuracy in range.

1.0 1

0.8 1

- Bounded error out of range

= Fourier approximation.
« LSig(x) = a + bsin(xk).

0.6 1

0.4

= Mask t, shared value A = x-f.
= No secure comparison is required.

= sin(A+t) = sin(A)cos(t) + cos(a)sin(t) *

7th December 2023

Secure Soffmax/Sigmoid for Machine-learning Computation

— 0(Xx)
— Folx)

Saturating

Derivative
Closeto 0

|

Saturating

Derivative
Close to 0

-4

New Sigmoid Approx. and Protocol

= Jointly compute LSig(x) = a + bsin((A + f)k) online. @
- Public parameters a, b, k. XIolAlo g Py
= Py holds [A], = [x],- [f]; P, holds [A], = [x], - [f],. A
= Pysends [A] ;P sends [A],. [T round]
[4], [4],
\J
&£

], [A]] ?

1

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 20

New Sigmoid Approx. and Protocol

= Jointly compute LSig(x) = a + bsin((A + f)k) online. /a

- Public parameters a, b, k. X, A 1t Py
= Py holds [A] = [x] - [f]; P, holds [A], = [x], - [f],.

= Pysends [A] ;P sends [A],. [T round]

- Poand P, compute A = [A],+ [A],.

£
4 11 8
1

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 21

New Sigmoid Approx. and Protocol

= Jointly compute LSig(x) = a + bsin((A + f)k) online. /a

g Public parameters a, b, k. xlo A [fl, P,
holds [A], = [x] - [f]; P, holds [A], = [x], - [f] :
O 0 0 0’ 1] 1 Ak) Ak
Osends (Al P, sends [A]] [T round] sinak).cos(Ak)
O and P, compu’reA [A],+ [A]L.
P, ana P locally compute sin(Ak), cos(Ak)
sin(Ak),cos(Ak)

&
4 11 8
1

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 22

New Sigmoid Approx. and Protocol

£
= Jointly compute LSig(x) = a + bsin((A + f)k) online. a
- Public parameters a, b, k. [x]p A [t P,

= Py holds [A], = [x],- [f]; P, holds [A], = [x], - [f],
Osends (Al P, sends [A]] [T round]
P,and P, compu’reA [A],+ [A]L.

- P, and P locally compute sin(Ak), cos(AKk).

sin(Ak),cos(Ak),[u],.[V],

-Secre’r—shcred outputs sin(Ak),cos(Ak),[u],,[V],
+ P, gets a+b(sin(Ak)[v],+ cos(Ak)[u]). SO
- P, getfs a + b(sin(Ak)[v] + cos(Ak)[u],). X], A [f]

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 23

New Sigmoid Approx. and Protocol

£
= Jointly compute LSig(x) = a + bsin((A + f)k) online. g

- Public parameters a, b, k. xIp A 11l P,

» Py holds [A], = [x],- [f],; P, holds [A], = [x], - [1]

- P, sends [A]; P, sends [A],. [1 round]

- P,and P, compute A = [A], + [A],.

- P, and P, locally compute sin(Ak), cos(AKk).

'sin(Ak),cos(Ak).[U].[V],

= Secret-shared outputs sin(Ak),cos(Ak),[u] . [V],
- P, gefs a +b(sin(Ak)[v] + cos(ak)[U],). &£
P gets a + b(sin(Ak)[v] + cos(AK)[U],). x], A [f]

-What are [ul, V], [f], and [u],.[v],.[t],?

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 24

New Sigmoid Approx. and Protocol

“What are [u],,[v],[f], and [u],.[V], [f],? a
= sin(tk) = [u], + [u],; cos(tk) = [v], + [v],; t = [t],+ [f], P,
- Randomness independent to private x. (Ul V1o [T

- Generated by a crypto commodity server.
= In a pre-computation phase offline.

[ul,.[v],. 1]

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

P

1

25

New Sigmoid Approx. and Protocol
N

“What are [u],[V],[f], and [u],,[V],.[f],¢ ﬂ
- sin(tk) = [u], + [u],; cos(tk) = [v], + [v],; t = [t], + [t], P,
- Randomness independent to private x.
- Generated by a crypto commodity server.
= In a pre-computation phase offline.

. o ’5) - ‘F

Optimize offline communications Nt
= Use PRF with a synchronized counter. [ul,.[v],
1 &PO generate [u] . [v], [f] using the same key,. Patin
g &P] generate [f], using the same key.. ﬂ
F)

" compu’res and sends [u],,[v], tO P.. 1

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

Communication Costs

= Achieved < 40bits online in 1 round!

Protocol Offline (bits) | Online (bits) | Overall (bits) Round
ABY-series - ~800 - 5
Polyn. (K=5,8) 320 ~ 512 1280 ~ 2048 | 1600 ~ 2560 1
Ours (m=4, K=5) 640 36 676 1
Ours (m=4, K=8) 1024 36 1060 1
Ours (m=5, K=5) 640 38 678 1
Ours (m=5, K=8) 1024 38 1062 1

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 27

State-of-The-Art Secure Softmax

- Softmax(x) = e/ (Xe?) : R™+~ [0, 1]™.
= [t squashes any input vector to a probability vector.

= Multi-classification. Outout Softmax
Iaygr activation function Probabilities
1.3] 0.02]
2.1 e 0.90 *
2.2 |e—) — |) 05

Y, e

0.7 j=1 0.01
_1.1 i _0.02_

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 28

State-of-The-Art Secure Softmax

- Softmax(x) = e/ (Xe?) : R™+~ [0, 1]™.
= [t squashes any input vector to a probability vector.
= Crypten [NeurlPS'22] follows exact computation.
- It requires secure maximum, exponentiation, and division.

= Secure maximum takes O(log m) rounds for removing the largest
input and mitigating overflow of e~ and xe*.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 29

State-of-The-Art Secure Softmax

- Softmax(x) = e/ (Xe?) : R™+~ [0, 1]™.
= [t squashes any input vector to a probability vector.
= Crypten [NeurlPS'22] follows exact computation.
- It requires secure maximum, exponentiation, and division.

= Secure maximum takes O(log m) rounds for removing the largest
input and mitigating overflow of e~ and xe*.

= ASM protocol replaces exponential function with RelLU.
- It is adopted in SecureNN [PoPETS’19], Falcon [POPETS'21].

- It relies on manual efforts in tuning the model [Keller and Sun,
ICML'22].

State-of-The-Art Secure Softmax

= How about their communication costse

Protocol #Class Online (bits) | Overall (bifs) Round
ASM protocol 10 - 3M /04
ASM protocol 100 - 30M /04
ASM protocol 1000 - 302M /04
Crypten 10 /83250 982K 171
Crypten 100 8536390 1TM 300
Crypten 1000 86067790 108M 430

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 31

State-of-The-Art Secure Softmax

galeile Con we expect communication costs
N roundse

Protocc

ASM protoCa 4
ASM protocol 100 - 30M /04
ASM protocol 1000 - 302M /04
Crypten 10 /83250 982K 171
Crypten 100 8536390 1TM 300

Crypten 1000 86067790 108M 430

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 32

New Soffmax Approx. and Protocol

= Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax’s outputs.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

33

New Soffmax Approx. and Protocol

= Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax’'s outputs.
= For an input vector x and iteration step r, we instantiate a
vector function QSMax g(), which is an ordinary differential
equation solved by Euler formula.
- g(0)=[1/m, ..., 1/m]
fori =1,...rdo
g(i/r) =g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1)/r) Ir
=g(r/r) = g(1), iteratively limits to real soffmax.

New Soffmax Approx. and Protocol

= Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax’'s outputs.

= For an input vector x and iteration step r, we instantiate a
vector function QSMax g(), which is an ordinary differential
equation solved by Euler formula.

- g(0)=[1/m, ..., 1/m]
fori =1, ...rdo
gli/r) =g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1)/r) Ir
=g(r/r) = g(1), iteratively limifs to real softmax.
*Notably, loop function contains only two multiplications and additions.

New Soffmax Approx. and Protocol

= Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax’'s outputs.

= For an input vector x and iteration step r, we instantiate a
vector function QSMax g(), which is an ordinary differential
equation solved by Euler formula.

- g(0)=[1/m, ..., 1/m]
fori =1, ...rdo
g(ifr) = g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1) /r) Ir
=g(r/r) = g(1), iteratively limifs to real softmax.
*Notably, loop function contains only two multiplications and additions.

New Soffmax Approx. and Protocol

= Jointly compute QSMax(x) online. (1/m, .., 1/m] @
- g(0) = [1/m, ..., 1/m] <8 P,
fori =1,...rdo
g(i/r) = g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1)/r) /r
&£
0, ... 0] g

1

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 37

New Soffmax Approx. and Protocol
&£

= Jointly compute QSMax(x) online. [1/m, ..., 1/m]
- g(0) =[1/m, ..., 1/m] [x]o= [X]lo/r P,
fori =1, ... rdo (‘D
g(i/r) = g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1)/r) [T

X],= [x], /7 do

0, 0]

P,

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 38

New Soffmax Approx. and Protocol

= Jointly compute QSMax(x) online. [1/m, ..., 1/m] =
- g(0) =[1/m, ..., 1/m] = [(x]o= [Xlo/r P,
fori =1, ... rdo »
g(i/r) = g((i-1)/r) + (x - <x.g((i-1)/r)=1)*g((i-1)/r) [r T
= Jointly invoke secure multiplication 1. m~ [o].,[0],
- Inner product with m dimensions parallelly. l

X] = [X],/r d
0,...0] 8

P,

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 39

New Soffmax Approx. and Protocol

= Jointly compute QSMax(x) online. [1/m, ..., 1/m] ‘=
- g(0)=[1/m, 1/m] = [(x]o= [Xlo/r P,
fori =1, ..., rdo e [q],= (ZIp],) 1

g(i/r) =g((i-1)/r) + (x - <x.g((i-1)/r)=1)*g((i-1) /r) It
= Jointly invoke secure multiplication .

= Inner product with m dimensions parallelly.
[q],= (Z[p];)1

X] = [X]./r Ao
0,...0] 8

P,

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 40

New Soffmax Approx. and Protocol

= Jointly compute QSMax(x) online [1/m, ..., 1/m] =
- g(0) =[1/m, ..., 1/m] = [x],= [x]/r
fori =1,...rdo 1 (wlo= [x]o- lal,

g(i/r) =g((i-1)/r) + [x - <x.g((i-1)/r)=1)*g((i-1) /r) It
= Jointly invoke secure multiplication .

= Inner product with m dimensions parallelly.
w],= [x], - [a],

[x] - [x] /r/’\
0, ...0]

P,

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 4]

New Soffmax Approx. and Protocol
£

= Jointly compute QSMax(x) online [1/m, ..., 1/m]
- g(0)=[1/m, 1/m] = [(x]o= [Xlo/r P,
fori =1, .. rdo 1 (wlo=[x]o- 14l
g(i/r) = g((i-1)/r) + x-<x.g((i-1)/r)=1)"g((I-1)/r)/r T
= Jointly invoke secure multiplication . e [f],[f],
- Inner product with m dimensions parallelly. l
= Element-wise product with m dimensions. wl,= [x], - [q],

[x] = [x] /r/\
0, ...0] &8

P,

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 42

New Soffmax Approx. and Protocol

= Jointly compute QSMax(x) online (1/m, ..., 1/m] =
= g(0)=1[1/m,. I/m;S [x]o= [x]o/r
fori =1, rdo (p Pl,= [x],- 4],

g(ifr) = g((i-1)/1) + (x - <x.g((-1)/)>1)*g((i-1)/r - 1OUFT)IG* T
= Jointly invoke secure multiplication .
= Inner product with m dimensions parallelly. [9((i-1)/r)], +],
= Element-wise product with m dimensions. lp],= [x], - [ql,

[x] - [x] /r/’\
0, ...0]

i

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 43

New Soffmax Approx. and Protocol

= Jointly compute QSMax(x) online [1/m, ... 1/m] =
=g(0) =[1/m, ... 1/m] [x],= [x],/r Py
fori =1,...rdo <8 [Pl,= [x]y- |
g(i/r) =g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1)/r) Ir m
= Jointly invoke secure multiplication . r=1
= Inner product with m dimensions parallelly. :
= Element-wise product with m dimensions. p],=[x],- [|

[x],= [x],/r
0, 0]

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 44

New Soffmax Approx. and Protocol

&£
= Jointly compute QSMax(x) online [1/m, .., 1/m]
=g(0) =[1/m, ... 1/m] [X],= [x],/r "P,

fori =1,...rdo <18 [Ply= [X]o- |
g(i/r) =g((i-1)/r) + (x - <x.g((i-1)/r)>1)*g((i-1)/r) It g
= Jointly invoke secure multiplication . r=1

= Inner product with m dimensions parallelly.
= Element-wise product with m dimensions. p],=[x],- [

= Secret-shared outpufs. [x],= [x],/r
- P, gets [g(1]],. 0, ..., 0]
- P, gets [g(])],.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 45

Communication Costs

= Achieved < 10% communication costs in 32 rounds!

Protocol #Class Online (bits) Overall (bits) Round
ASM protocol 10 - 3M 704
Crypten 10 /83K 982K 171
Ours 10 63K 84K 32
ASM protocol 100 - 30M 704
Crypten 100 8.5M 1TM 300
Ours 100 616K 821K 32
ASM protocol 1000 - 302M 704
Crypten 1000 86M 108M 430
Ours 1000 6M 8M 32

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation 46

Experiments & System Performance

= Datasets: MNIST, CIFAR-10
= Models: AlexNet, LeNet, VGG-16, ResNet, Networks A-B-C-D.

- Communication reduces by 57%-77%.

= Accuracy
= reaches a higher accuracy for AlexNet, VGG-16 compared with
Piranha [Usenix Sec'22].

= reaches a similar accuracy for Networks A-B-C-D compared with
SPDZ-QT [Keller and Sun, ICML22].

= Training fime
= 10%-60% speed-up in LAN & 56%-78% speed-up in WAN.

7th December 2023 Secure Soffmax/Sigmoid for Machine-learning Computation

47

[y,

Conclusion THANK
YOU

* Propose two cr}/p’rogrophy—frie.ndly approximations for secure
computation ot soffmax and sigmoid, leading to expedited
private training with much lower communicafion.

* Provide both C++ & Python implementation for different
programming preference.

- Shed light on protocol design for bounded nonlinear functions,
avoiding unbounded intermediate functions (e*, 1/x).

- Extend the realm of secure computation to encompass solutions
for differential equations with raftional polynomial or trigonometric
functions coefficients.

