
Yu Zheng*, Qizhi Zhang*, Sherman S. M. Chow
Yuxiang Peng, Sijun Tan, Lichun Li, Shan Yin

1

Secure Softmax/Sigmoid for
Machine-learning

Computation

Annual Computer Security Applications Conference 2023

Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Secure Machine Learning Background
▪ Secret share: 2 computing parties + 1 commodity server
▪ Against semi-honest adversary

Rundown

2Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Secure Machine Learning Background
▪ Secret share: 2 computing parties + 1 commodity server
▪ Against semi-honest adversary

▪ Non-Linearity Challenges and Sigmoid/Softmax in Crypto
▪ New Protocols for Nonlinear Functions

▪ Local-sigmoid via Fourier series
▪ Quasi-softmax via ordinary differential equation

Rundown

3Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Secure Machine Learning Background
▪ Secret share: 2 computing parties + 1 commodity server
▪ Against semi-honest adversary

▪ Non-Linearity Challenges and Sigmoid/Softmax in Crypto
▪ New Protocols for Nonlinear Functions

▪ Local-sigmoid via Fourier series
▪ Quasi-softmax via ordinary differential equation

▪ Experiments and System Performance
▪ Conclusion

Rundown

4Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Secure Softmax/Sigmoid for Machine-learning Computation

▪ Machine learning attains great performance
▪ Privacy concerns over sensitive data, e.g., health, finance.

Secure Machine Learning

7th December 2023 5

Secure Softmax/Sigmoid for Machine-learning Computation

▪ Machine learning attains great performance
▪ Privacy concerns over sensitive data, e.g., health, finance.
▪ Most SML frameworks support simpler inference tasks

▪ LLAMA [PoPets’22], GForce [Usenix Sec’21], SiRNN [S&P’21],
CryptFlow2 [CCS’20], etc.

Secure Machine Learning

7th December 2023 6

Secure Softmax/Sigmoid for Machine-learning Computation

▪ Machine learning attains great performance
▪ Privacy concerns over sensitive data, e.g., health, finance.
▪ Most SML frameworks support simpler inference tasks

▪ LLAMA [PoPets’22], GForce [Usenix Sec’21], SiRNN [S&P’21],
CryptFlow2 [CCS’20], etc.

▪ Training is more complicated to do with cryptography
▪ It produces fluctuating computation results.
▪ It requires non-linear computation such as those in activation layers.

Secure Machine Learning

7th December 2023 7

▪ Crypto. excels primarily with finite fields and linear functions.
▪ Accuracy: expand finite field to cater to fluctuating ranges.

▪ But, increase computational & communication overheads.
▪ Secure protocols for exact computation of non-linearity are known to

be heavyweight.

Crypto. Challenges in Secure Training

8Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Crypto. excels primarily with finite fields and linear functions.
▪ Accuracy: expand finite field to cater to fluctuating ranges.

▪ But, increase computational & communication overheads.
▪ Secure protocols for exact computation of non-linearity are known to

be heavyweight.
▪ Not until recently, start to have secure training frameworks.

▪ CrypTen [NeurIPS'21], CryptGPU [S&P’21], Piranha [Usenix Sec’22], etc.
▪ Support more complex activation, including softmax and sigmoid.
▪ Achieve high computational performance over AlexNet (60M param)
and VGG-16 (138M param) .

Crypto. Challenges in Secure Training

9Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ However, large communication overhead persists as a
major concern.

▪ Prominently, Piranha, a GPU platform for secure computation,
reports 94%+ of the training time consumed by communication
in a wide-area network (WAN) setting.

Communication Bottleneck

10Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ However, large communication overhead persists as a
major concern.

▪ Prominently, Piranha, a GPU platform for secure computation,
reports 94%+ of the training time consumed by communication
in a wide-area network (WAN) setting.

▪ Informally, sigmoid/softmax combine ex ,1/x, or Σex.
▪ ex and 1/x are unbounded and continuous.

Communication Bottleneck

11Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ However, large communication overhead persists as a
major concern.

▪ Prominently, Piranha, a GPU platform for secure computation,
reports 94%+ of the training time consumed by communication
in a wide-area network (WAN) setting.

▪ Informally, sigmoid/softmax combine ex ,1/x, or Σex.
▪ ex and 1/x are unbounded and continuous.

▪ Securely computing them with efficiency is challenging.
▪ Existing works either separately approximate or replace them.
▪ Below, we detail secure sigmoid and softmax one by one.

Communication Bottleneck

12Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1].
▪ Binary classification.
▪ It squashes any input to a value in (0,1).

State-of-The-Art Secure Sigmoid

13Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

*Figure is from Google image.

▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1].
▪ Binary classification.
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.
▪ x + 0.5 for |x|< 0.5; x = 0 or x = 1.
▪ Requires comparison to identify pieces.
▪ Relatively inaccurate approx. near to 0.

State-of-The-Art Secure Sigmoid

14Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1].
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.

▪ Chebyshev polynomial
▪ [CCS'21 Workshop]
▪ Linear to #iterms
▪ Possibly result in gradient explosion

State-of-The-Art Secure Sigmoid

15Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1].
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.

▪ Chebyshev polynomial [CCS'21 workshop]
▪ How about their communication costs?

State-of-The-Art Secure Sigmoid

Protocol Offline (bits) Online (bits) Overall (bits) Round
ABY-series - ～800 - 5

Polyn. (5,8) 320 ～ 512 1280 ～ 2048 1600 ～ 2560 1

16Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Sigmoid(x) = ex/(ex + 1) : (-inf, +inf) ↦ [0, 1].
▪ It squashes any input to a value in (0,1).

▪ ABY-series protocols [CCS'18, Usenix Sec'21].
▪ Piecewise linear approx.

▪ Chebyshev polynomial [CCS'21 workshop]
▪ How about their communication costs?

State-of-The-Art Secure Sigmoid

17Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Protocol Offline (bits) Online (bits) Overall (bits) Round
ABY-series - ～800 - 5

Polyn. (5,8) 320 ～ 512 1280 ～ 2048 1600 ～ 2560 1

Can we expect <40 bits online in 1 round?

▪ Local-Sigmoid definition.
▪ Sigmoid in [-a, a].
▪ High accuracy in range.
▪ Bounded error out of range

New Sigmoid Approx. and Protocol

18Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Sigmoid Function and Its Derivative

*Figure is from Google image.

▪ Local-Sigmoid definition.
▪ Sigmoid in [-a, a].
▪ High accuracy in range.
▪ Bounded error out of range

▪ Fourier approximation.
▪ LSig(x) = a + bsin(xk).
▪ Mask t, shared value Δ = x-t.
▪ No secure comparison is required.
▪ sin(Δ + t) = sin(Δ)cos(t) + cos(Δ)sin(t)

New Sigmoid Approx. and Protocol

19Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Sigmoid Function and Its Derivative

▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1.
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]

New Sigmoid Approx. and Protocol

20Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[x]0[Δ]0 [t]0

[x]1[Δ]1[t]1

[Δ]1 [Δ]0

▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1.
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.

New Sigmoid Approx. and Protocol

21Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[x]0 Δ [t]0

[x]1 Δ [t]1

▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.
▪ P0 and P1 locally compute sin(Δk), cos(Δk)

New Sigmoid Approx. and Protocol

22Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

 sin(Δk),cos(Δk)

 sin(Δk),cos(Δk)

[x]0 Δ [t]0

[x]1 Δ [t]1

▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.
▪ P0 and P1 locally compute sin(Δk), cos(Δk).

▪Secret-shared outputs
▪ P0 gets a + b(sin(Δk)[v]0+ cos(Δk)[u]0).
▪ P1 gets a + b(sin(Δk)[v]1+ cos(Δk)[u]1).

New Sigmoid Approx. and Protocol

23Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

sin(Δk),cos(Δk),[u]1,[v]1

[x]0 Δ [t]0

[x]1 Δ [t]1

sin(Δk),cos(Δk),[u]0,[v]0

▪Jointly compute LSig(x) = a + bsin((Δ + t)k) online.
▪ Public parameters a, b, k.
▪ P0 holds [Δ]0 = [x]0 - [t]0; P1 holds [Δ]1 = [x]1 - [t]1
▪ P0 sends [Δ]0; P1 sends [Δ]1. [1 round]
▪ P0 and P1 compute Δ = [Δ]0 + [Δ]1.
▪ P0 and P1 locally compute sin(Δk), cos(Δk).

▪Secret-shared outputs
▪ P0 gets a + b(sin(Δk)[v]0+ cos(Δk)[u]0).
▪ P1 gets a + b(sin(Δk)[v]1+ cos(Δk)[u]1).

▪ What are [u]0,[v]0,[t]0 and [u]1,[v]1,[t]1?

New Sigmoid Approx. and Protocol

24Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

sin(Δk),cos(Δk),[u]1,[v]1

[x]0 Δ [t]0

[x]1 Δ [t]1

sin(Δk),cos(Δk),[u]0,[v]0

▪What are [u]0,[v]0,[t]0 and [u]1,[v]1,[t]1?
▪ sin(tk) = [u]0 + [u]1; cos(tk) = [v]0 + [v]1; t = [t]0 + [t]1
▪ Randomness independent to private x.
▪ Generated by a crypto commodity server.
▪ In a pre-computation phase offline.

New Sigmoid Approx. and Protocol

25Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[u]0,[v]0,[t]0

[u]1,[v]1,[t]1

▪What are [u]0,[v]0,[t]0 and [u]1,[v]1,[t]1?
▪ sin(tk) = [u]0 + [u]1; cos(tk) = [v]0 + [v]1; t = [t]0 + [t]1
▪ Randomness independent to private x.
▪ Generated by a crypto commodity server.
▪ In a pre-computation phase offline.

▪Optimize offline communication?
▪ Use PRF with a synchronized counter.
▪ &P0 generate [u]0,[v]0,[t]0 using the same key0.
▪ &P1 generate [t]1 using the same key1.
▪ computes and sends [u]1,[v]1 to P1.

New Sigmoid Approx. and Protocol

26Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[u]1,[v]1

▪Achieved < 40bits online in 1 round!

Communication Costs

27Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Protocol Offline (bits) Online (bits) Overall (bits) Round
ABY-series - ～800 - 5

Polyn. (K=5,8) 320 ～ 512 1280 ～ 2048 1600 ～ 2560 1
Ours (m=4, K=5) 640 36 676 1
Ours (m=4, K=8) 1024 36 1060 1
Ours (m=5, K=5) 640 38 678 1
Ours (m=5, K=8) 1024 38 1062 1

▪ Softmax(x) = ez_i/(Σez_j) : Rm ↦ [0, 1]m.
▪ It squashes any input vector to a probability vector.
▪ Multi-classification.

State-of-The-Art Secure Softmax

28Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Softmax(x) = ez_i/(Σez_j) : Rm ↦ [0, 1]m.
▪ It squashes any input vector to a probability vector.

▪Crypten [NeurIPS’22] follows exact computation.
▪ It requires secure maximum, exponentiation, and division.
▪ Secure maximum takes O(log m) rounds for removing the largest

input and mitigating overflow of ez_i and Σez_j.

State-of-The-Art Secure Softmax

29Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Softmax(x) = ez_i/(Σez_j) : Rm ↦ [0, 1]m.
▪ It squashes any input vector to a probability vector.

▪Crypten [NeurIPS’22] follows exact computation.
▪ It requires secure maximum, exponentiation, and division.
▪ Secure maximum takes O(log m) rounds for removing the largest

input and mitigating overflow of ez_i and Σez_j.
▪ASM protocol replaces exponential function with ReLU.

▪ It is adopted in SecureNN [PoPETS’19], Falcon [PoPETS’21].
▪ It relies on manual efforts in tuning the model [Keller and Sun,

ICML’22].

State-of-The-Art Secure Softmax

30Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪How about their communication costs?

State-of-The-Art Secure Softmax

31Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Protocol #Class Online (bits) Overall (bits) Round
ASM protocol 10 - 3M 704

ASM protocol 100 - 30M 704
ASM protocol 1000 - 302M 704
Crypten 10 783250 982K 171
Crypten 100 8536390 11M 300
Crypten 1000 86067790 108M 430

▪How about their communication costs?

State-of-The-Art Secure Softmax

32Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Protocol #Class Online (bits) Overall (bits) Round
ASM protocol 10 - 3M 704

ASM protocol 100 - 30M 704
ASM protocol 1000 - 302M 704
Crypten 10 783250 982K 171
Crypten 100 8536390 11M 300
Crypten 1000 86067790 108M 430

Can we expect <10% communication costs
in <35 rounds?

▪Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax's outputs.

New Softmax Approx. and Protocol

33Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax's outputs.

▪For an input vector x and iteration step r, we instantiate a
vector function QSMax g(), which is an ordinary differential
equation solved by Euler formula.

▪ g(0) = [1/m, ... , 1/m]
for i = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r
▪g(r/r) = g(1), iteratively limits to real softmax.

New Softmax Approx. and Protocol

34Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax's outputs.

▪For an input vector x and iteration step r, we instantiate a
vector function QSMax g(), which is an ordinary differential
equation solved by Euler formula.

▪ g(0) = [1/m, ... , 1/m]
for i = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r
▪g(r/r) = g(1), iteratively limits to real softmax.
▪ Notably, loop function contains only two multiplications and additions.

New Softmax Approx. and Protocol

35Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪Formulate Quasi-Softmax (QSMax) capturing probability
distribution of softmax's outputs.

▪For an input vector x and iteration step r, we instantiate a
vector function QSMax g(), which is an ordinary differential
equation solved by Euler formula.

▪ g(0) = [1/m, ... , 1/m]
for i = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r
▪g(r/r) = g(1), iteratively limits to real softmax.
▪ Notably, loop function contains only two multiplications and additions.

New Softmax Approx. and Protocol

36Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

New Softmax Approx. and Protocol

37Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

New Softmax Approx. and Protocol

38Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]
[x]1= [x]1/r

[x]0= [x]0/r

▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.

New Softmax Approx. and Protocol

39Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

π ↦ [o]0,[o]1

▪Jointly compute QSMax(x) online.
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.

New Softmax Approx. and Protocol

40Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[q]0= (Σ[pi]0)1

[q]1= (Σ[pi]1)1

▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.

New Softmax Approx. and Protocol

41Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[w]0= [x]0 - [q]0

[w]1= [x]1 - [q]1

▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions.

New Softmax Approx. and Protocol

42Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[w]0= [x]0 - [q]0

[w]1= [x]1 - [q]1

π ↦ [t]0,[t]1

▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions.

New Softmax Approx. and Protocol

43Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[p]0= [x]0 - [q]0

[p]1= [x]1 - [q]1

[g((i-1)/r)]0 + [t]0

[g((i-1)/r)]1 + [t]1

▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions.

New Softmax Approx. and Protocol

44Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[p]0= [x]0 - [q]0

[p]1= [x]1 - [q]1

[g((i-1)/r)]0 + [t]0

[g((i-1)/r)]1 + [t]1

r = 16

▪Jointly compute QSMax(x) online
▪ g(0) = [1/m, ... , 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

▪Jointly invoke secure multiplication π.
▪ Inner product with m dimensions parallelly.
▪ Element-wise product with m dimensions.

▪ Secret-shared outputs.
▪ P0 gets [g(1)]0.
▪ P1 gets [g(1)]0.

New Softmax Approx. and Protocol

45Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

P0

P1

[1/m, ... , 1/m]

[0, ... , 0]

[x]0= [x]0/r

[x]1= [x]1/r

[p]0= [x]0 - [q]0

[p]1= [x]1 - [q]1

[g((i-1)/r)]0 + [t]0

[g((i-1)/r)]1 + [t]1

r = 16

▪Achieved < 10% communication costs in 32 rounds!

Communication Costs

46Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

Protocol #Class Online (bits) Overall (bits) Round
ASM protocol 10 - 3M 704
Crypten 10 783K 982K 171
Ours 10 63K 84K 32
ASM protocol 100 - 30M 704
Crypten 100 8.5M 11M 300
Ours 100 616K 821K 32
ASM protocol 1000 - 302M 704
Crypten 1000 86M 108M 430
Ours 1000 6M 8M 32

▪ Datasets: MNIST, CIFAR-10
▪ Models: AlexNet, LeNet, VGG-16, ResNet, Networks A-B-C-D.
▪ Communication reduces by 57%-77%.
▪ Accuracy

▪ reaches a higher accuracy for AlexNet, VGG-16 compared with
Piranha [Usenix Sec'22].

▪ reaches a similar accuracy for Networks A-B-C-D compared with
SPDZ-QT [Keller and Sun, ICML'22].

▪ Training time
▪ 10%-60% speed-up in LAN & 56%-78% speed-up in WAN.

Experiments & System Performance

47Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

▪ Propose two cryptography-friendly approximations for secure
computation of softmax and sigmoid, leading to expedited
private training with much lower communication.

▪ Provide both C++ & Python implementation for different
programming preference.

▪ Shed light on protocol design for bounded nonlinear functions,
avoiding unbounded intermediate functions (ex, 1/x).

▪ Extend the realm of secure computation to encompass solutions
for differential equations with rational polynomial or trigonometric
functions coefficients.

Conclusion

48Secure Softmax/Sigmoid for Machine-learning Computation7th December 2023

