Annual Computer Security Applications Conference 2023

Secure Softmax/Sigmoid for Machine-learning C@mput@ti@n

Yu Zheng*, Qizhi Zhang*, Sherman S. M. Chow Yuxiang Peng, Sijun Tan, Lichun Li, Shan Yin

Rundown

<u>Secure</u> Machine Learning Background

- Secret share: 2 computing parties + 1 commodity server
- Against semi-honest adversary

Rundown

<u>Secure</u> Machine Learning Background

Secret share: 2 computing parties + 1 commodity server

- Against semi-honest adversary
- Non-Linearity Challenges and Sigmoid/Softmax in Crypto
- New Protocols for Nonlinear Functions
 - Local-sigmoid via Fourier series
 - Quasi-softmax via ordinary differential equation

Rundown

<u>Secure</u> Machine Learning Background

Secret share: 2 computing parties + 1 commodity server

- Against semi-honest adversary
- Non-Linearity Challenges and Sigmoid/Softmax in Crypto
- New Protocols for Nonlinear Functions
 - Local-sigmoid via Fourier series
 - Quasi-softmax via ordinary differential equation
- Experiments and System Performance
- Conclusion

Secure Machine Learning

- Machine learning attains great performance
- Privacy concerns over sensitive data, e.g., health, finance.

Secure Machine Learning

- Machine learning attains great performance
- Privacy concerns over sensitive data, e.g., health, finance.
- Most SML frameworks support simpler inference tasks
- ☆☆☆ LLAMA [PoPets'22], GForce [Usenix Sec'21], SiRNN [S&P'21], CryptFlow2 [CCS'20], etc.

Secure Machine Learning

- Machine learning attains great performance
- Privacy concerns over sensitive data, e.g., health, finance.
- Most SML frameworks support simpler inference tasks
- ☆☆☆ LLAMA [PoPets'22], GForce [Usenix Sec'21], SiRNN [S&P'21], CryptFlow2 [CCS'20], etc.
- Training is more complicated to do with cryptography
 - It produces fluctuating computation results.
 - It requires non-linear computation such as those in activation layers.

Crypto. Challenges in Secure Training

• Crypto. excels primarily with finite fields and linear functions.

- Accuracy: expand finite field to cater to fluctuating ranges.
- But, increase computational & communication overheads.
 - Secure protocols for exact computation of non-linearity are known to be heavyweight.

Crypto. Challenges in Secure Training

- Crypto. excels primarily with finite fields and linear functions.

- Accuracy: expand finite field to cater to fluctuating ranges.
- But, increase computational & communication overheads.
 - Secure protocols for exact computation of non-linearity are known to be heavyweight.
- Not until recently, start to have secure training frameworks.
- ☆☆☆CrypTen [NeurlPS'21], CryptGPU [S&P'21], Piranha [Usenix Sec'22], etc.
 - Support more complex activation, including softmax and sigmoid.
 - Achieve high computational performance over AlexNet (60M param) and VGG-16 (138M param).

Communication Bottleneck

 However, large communication overhead persists as a major concern.

 Prominently, Piranha, a GPU platform for secure computation, reports 94%+ of the training time consumed by communication in a wide-area network (WAN) setting.

Communication Bottleneck

 However, large communication overhead persists as a major concern.

- Prominently, Piranha, a GPU platform for secure computation, reports 94%+ of the training time consumed by communication in a wide-area network (WAN) setting.
- Informally, sigmoid/softmax combine e^x , 1/x, or Σe^x .

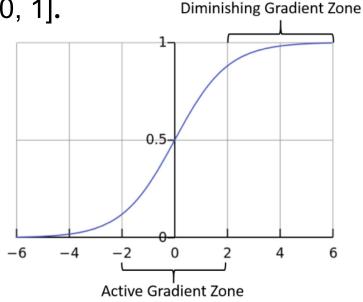
e^x and 1/x are unbounded and continuous.

Communication Bottleneck

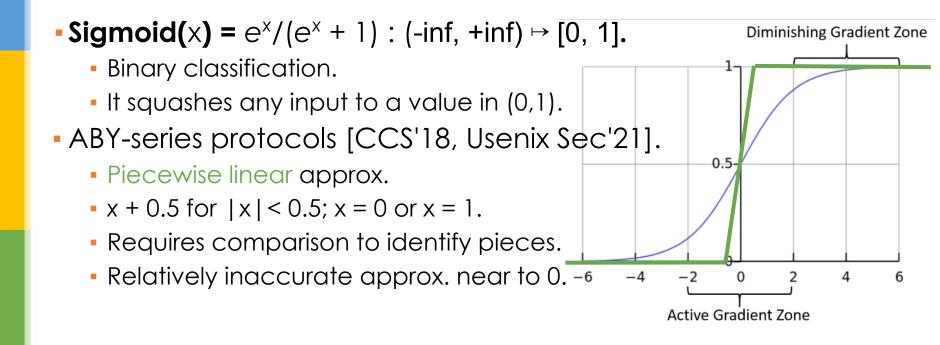
- However, large communication overhead persists as a major concern.
 - Prominently, Piranha, a GPU platform for secure computation, reports 94%+ of the training time consumed by communication in a wide-area network (WAN) setting.
- Informally, sigmoid/softmax combine e^x , 1/x, or Σe^x .
 - e^x and 1/x are unbounded and continuous.
- Securely computing them with efficiency is challenging.
 - Existing works either separately approximate or replace them.
 - Below, we detail secure sigmoid and softmax one by one.

Sigmoid(x) = e^x/(e^x + 1) : (-inf, +inf) → [0, 1].

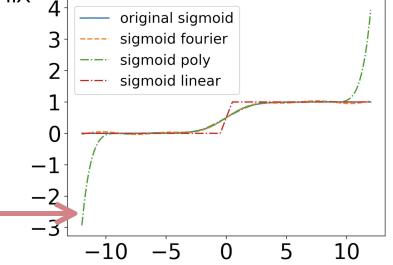
- Binary classification.
- It squashes any input to a value in (0,1).



*Figure is from Google image.



- Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) \mapsto [0, 1].
 - It squashes any input to a value in (0,1).
- ABY-series protocols [CCS'18, Usenix Sec'211
 - Piecewise linear approx.
- Chebyshev polynomial
 - [CCS'21 Workshop]
 - Linear to #iterms
 - Possibly result in gradient explosion



- Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) \mapsto [0, 1].
 - It squashes any input to a value in (0,1).
- ABY-series protocols [CCS'18, Usenix Sec'21].
 - Piecewise linear approx.
- Chebyshev polynomial [CCS'21 workshop]
- How about their communication costs?

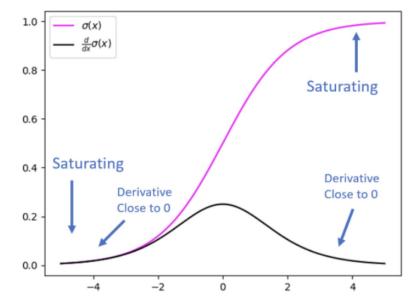
Protocol	Offline (bits)	Online (bits)	Overall (bits)	Round
ABY-series	-	~800	-	5
Polyn. (5,8)	320 ~ 512	1280 ~ 2048	1600 ~ 2560	1

- Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) \mapsto [0, 1].
 - It squashes any input to a value in (0,1).
- ABY-series protocols [CCS'18, Usenix Sec'21].
 - Pieq
- Can we expect <40 bits online in 1 round?</p>
- How about their commonication co

Protocol	Offline (bits)	Online (bits)	Overall (bits)	Round
ABY-series	-	~800	-	5
Polyn. (5,8)	320 ~ 512	1280 ~ 2048	1600 ~ 2560	1

- Local-Sigmoid definition.
 - Sigmoid in [-a, a].
 - High accuracy in range.
 - Bounded error out of range

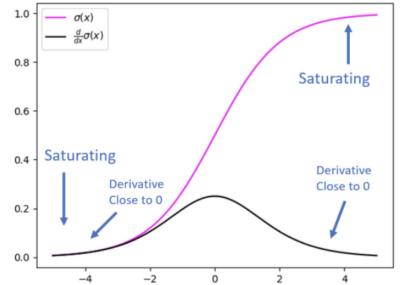
Sigmoid Function and Its Derivative



*Figure is from Google image.

- Local-Sigmoid definition.
 - Sigmoid in [-a, a].
 - High accuracy in range.
 - Bounded error out of range
- Fourier approximation.
 - LSig(x) = a + bsin(xk).
 - Mask t, shared value $\Delta = x-t$.
 - No secure comparison is required.
 - $sin(\Delta + t) = sin(\Delta)cos(t) + cos(\Delta)sin(t)$

Sigmoid Function and Its Derivative



- Jointly compute LSig(x) = $a + bsin((\Delta + t)k)$ online. [x]₀[Δ]₀[t]₀

- Public parameters a, b, k.
- P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1$.
- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]

[**Δ**]₁

 $[x]_{1}[\Delta]_{1}[t]$

- Jointly compute LSig(x) = $a + bsin((\Delta + t)k)$ online. - Public parameters a, b, k.

- Public parameters a, b, k.
- P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1$.
- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
- P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.

- Jointly compute $LSig(x) = a + bsin((\Delta + t)k)$ online.

- Public parameters a, b, k.
- P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1$
- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
- P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.
- P_0 and P_1 locally compute sin($\Delta \mathbf{k}$), cos($\Delta \mathbf{k}$)

 $sin(\Delta \mathbf{k}), cos(\Delta \mathbf{k})$

ne. [x]₀ ∠ [t]₀ □ - Jointly compute $LSig(x) = a + bsin((\Delta + t)k)$ online.

- Public parameters a, b, k.
- P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1 \sin(\Delta k), \cos(\Delta k), [v]_0, [v]_0$
- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
- P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.
- P_0 and P_1 locally compute $sin(\Delta k)$, $cos(\Delta k)$.

Secret-shared outputs

- P₀ gets $a + b(\sin(\Delta k)[v]_0 + \cos(\Delta k)[v]_0)$.
- P_1 gets $a + b(sin(\Delta k)[v]_1 + cos(\Delta k)[v]_1)$.

 $[X]_1 \Delta$

ne. [x]₀Δ [t]₀ P - Jointly compute $LSig(x) = a + bsin((\Delta + t)k)$ online.

- Public parameters a, b, k.
- P_0 holds $[\Delta]_0 = [x]_0 [t]_0; P_1$ holds $[\Delta]_1 = [x]_1 [t]_1$ sin $(\Delta \mathbf{k}), \cos(\Delta \mathbf{k}), [\upsilon]_0, [v]_0$
- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
- P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.
- P_0 and P_1 locally compute $sin(\Delta k)$, $cos(\Delta k)$.

Secret-shared outputs

• P_{0} gets $a + \mathbf{b}(\sin(\Delta \mathbf{k})[\mathbf{v}]_{0} + \cos(\Delta \mathbf{k})[\mathbf{v}]_{0})$.

• P_1 gets $a + b(sin(\Delta k)[v]_1 + cos(\Delta k)[v]_1)$. • What are $[v]_{0'}[v]_{0'}[t]_0$ and $[v]_{1'}[v]_{1'}[t]_1$?

 $\sin(\Delta \mathbf{k}), \cos(\Delta \mathbf{k}), [\upsilon]_1, [\upsilon]_1$

 $[x]_1 \Delta$

- What are $[\upsilon]_{0'}[v]_{0'}[t]_{0}$ and $[\upsilon]_{1'}[v]_{1'}[t]_{1}$?
 - $\sin(t\mathbf{k}) = [\upsilon]_0 + [\upsilon]_1; \cos(t\mathbf{k}) = [v]_0 + [v]_1; t = [t]_0 + [t]_1$
 - Randomness independent to private x.
 - Generated by a crypto commodity server.
 - In a pre-computation phase offline.

 $[U]_1, [V]_1,$

- What are $[\upsilon]_{0'}[v]_{0'}[t]_{0}$ and $[\upsilon]_{1'}[v]_{1'}[t]_{1}$?
 - $\sin(t\mathbf{k}) = [\upsilon]_0 + [\upsilon]_1; \cos(t\mathbf{k}) = [v]_0 + [v]_1; t = [t]_0 + [t]_1$
 - Randomness independent to private x.
 - Generated by a crypto commodity server.
- In a pre-computation phase offline.
 Optimize offline communication?
 - Use PRF with a synchronized counter.
 - $Q R_0$ generate $[U]_0, [V]_0, [t]_0$ using the same key₀.
 - \textcircled{P}_1 generate $[t]_1$ using the same key₁.
 - O computes and sends $[\upsilon]_1, [v]_1$ to P_1 .

[U]₁,[V

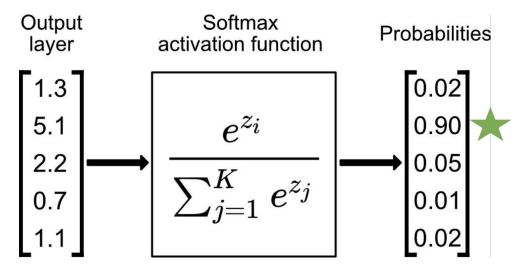
Communication Costs

Achieved < 40bits online in 1 round!</p>

Protocol	Offline (bits)	Online (bits)	Overall (bits)	Round
ABY-series	-	~800	_	5
Polyn. (K=5,8)	320 ~ 512	1280 ~ 2048	1600 ~ 2560	1
Ours (m=4, K=5)	640	36	676	1
Ours (m=4, K=8)	1024	36	1060	1
Ours (m=5, K=5)	640	38	678	1
Ours (m=5, K=8)	1024	38	1062	1

• **Softmax(**x**)** = $e^{z_{j}}/(\Sigma e^{z_{j}})$: $\mathbb{R}^{m} \mapsto [0, 1]^{m}$.

- It squashes any input vector to a probability vector.
- Multi-classification.



• Softmax(x) = $e^{z_i}/(\Sigma e^{z_i})$: $\mathbb{R}^m \mapsto [0, 1]^m$.

- It squashes any input vector to a probability vector.
- Crypten [NeurIPS'22] follows exact computation.
 - It requires secure maximum, exponentiation, and division.
 - Secure maximum takes O(log m) rounds for removing the largest input and mitigating overflow of e^{z_i} and Σe^{z_j}.

• **Softmax(**x**)** = $e^{z_{-}i}/(\Sigma e^{z_{-}j})$: $\mathbb{R}^{m} \mapsto [0, 1]^{m}$.

- It squashes any input vector to a probability vector.
- Crypten [NeurIPS'22] follows exact computation.
 - It requires secure maximum, exponentiation, and division.
 - Secure maximum takes O(log m) rounds for removing the largest input and mitigating overflow of e^{z_i} and Σe^{z_j}.

ASM protocol replaces exponential function with ReLU.

- It is adopted in SecureNN [PoPETS'19], Falcon [PoPETS'21].
- It relies on manual efforts in tuning the model [Keller and Sun, ICML'22].

How about their communication costs?

Protocol	#Class	Online (bits)	Overall (bits)	Round
ASM protocol	10	-	3M	704
ASM protocol	100	_	30M	704
ASM protocol	1000	_	302M	704
Crypten	10	783250	982K	171
Crypten	100	8536390	11M	300
Crypten	1000	86067790	108M	430

	we expect < 5 rounds?	10% comm	unication c	osts
Protoco				nd
ASM protocol	10	-		704
ASM protocol	100	-	30M	704
ASM protocol	1000	-	302M	704
Crypten	10	783250	982K	171
Crypten	100	8536390	11M	300
Crypten	1000	86067790	108M	430

 Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.

- Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.
- For an input vector x and iteration step r, we instantiate a vector function QSMax g(), which is an ordinary differential equation solved by Euler formula.

for *i* = 1, ..., *r* **do**

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1) * g((i-1)/r)/r$

• $\mathbf{g}(\mathbf{r/r}) = \mathbf{g}(1)$, iteratively limits to real softmax.

- Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.
- For an input vector x and iteration step r, we instantiate a vector function QSMax g(), which is an ordinary differential equation solved by Euler formula.

for *i* = 1, ..., *r* **do**

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1) * g((i-1)/r)/r$

g(r/r) = **g**(1), iteratively limits to real softmax.

Notably, loop function contains only two multiplications and additions.

- Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.
- For an input vector x and iteration step r, we instantiate a vector function QSMax g(), which is an ordinary differential equation solved by Euler formula.

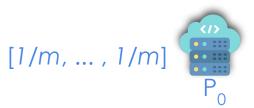
for *i* = 1, ..., *r* **do**

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)^*g((i-1)/r)/r$

g(r/r) = **g**(1), iteratively limits to real softmax.

Notably, loop function contains only two multiplications and additions.

Jointly compute QSMax(x) online. [1/m,
g(0) = [1/m, ..., 1/m]
for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r

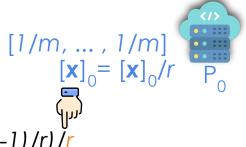


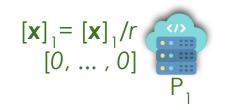
[0, ... , 0]

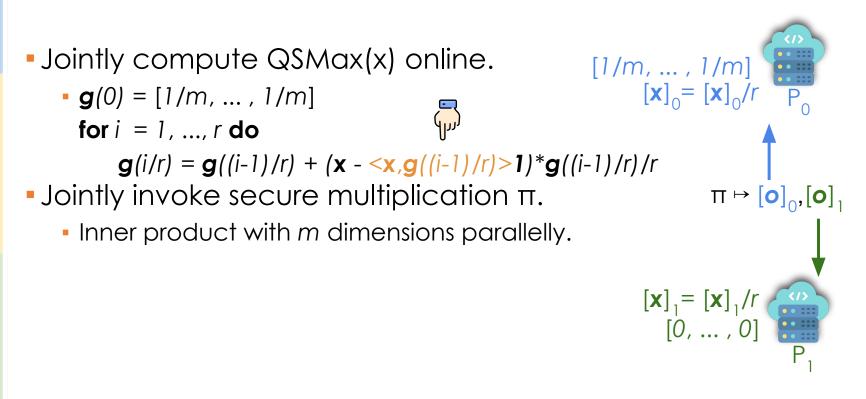
Jointly compute QSMax(x) online.

- **g**(0) = [1/m, ..., 1/m]
 - **for** *i* = 1, ..., *r* **do**

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1) g((i-1)/r)/r$







Jointly compute QSMax(x) online.

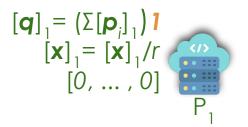
g(0) = [1/m, ..., 1/m]
 for i = 1, ..., r do

 $[1/m, ..., 1/m] = [\mathbf{x}]_0 = [\mathbf{x}]_0/r = \mathbf{P}_0$ $[\mathbf{q}]_0 = (\Sigma[\mathbf{p}_i]_0)\mathbf{1}$

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle)^*g((i-1)/r)/r$

- Jointly invoke secure multiplication π.

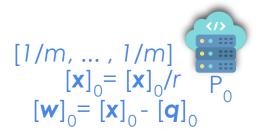
• Inner product with *m* dimensions parallelly.



 $\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)$

Jointly compute QSMax(x) online

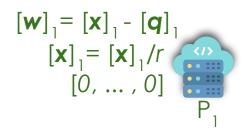
• **g**(0) = [1/m, ..., 1/m] for i = 1, ..., r do

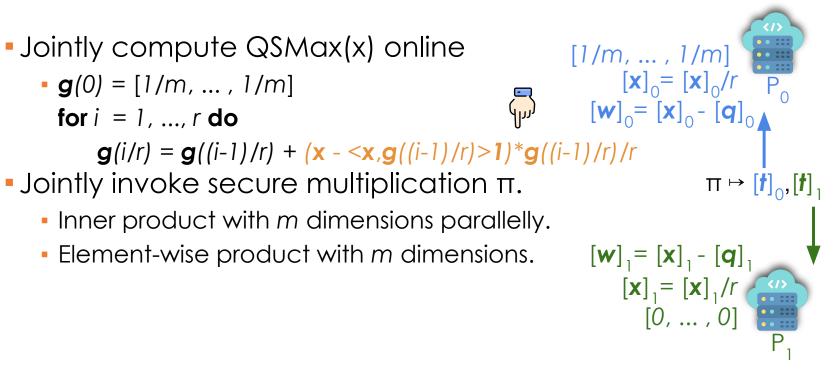


 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle)^*g((i-1)/r)/r$

Jointly invoke secure multiplication π.

Inner product with m dimensions parallelly.





Jointly compute QSMax(x) online

• g(0) = [1/m, ..., 1/m] for i = 1, ..., r do [1/m, ..., 1/m] $[\mathbf{x}]_{0} = [\mathbf{x}]_{0}/r P_{0}$ $[\mathbf{p}]_{0} = [\mathbf{x}]_{0} - [\mathbf{q}]_{0}$

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle \mathbf{1})^* g((i-1)/r)/r \qquad [g((i-1)/r)]_0 + [t]_0$

Jointly invoke secure multiplication π.

- Inner product with *m* dimensions parallelly.
- Element-wise product with *m* dimensions.

```
[\mathbf{g}((i-1)/r)]_{1} + [\mathbf{f}]_{1}[\mathbf{p}]_{1} = [\mathbf{x}]_{1} - [\mathbf{q}]_{1}[\mathbf{x}]_{1} = [\mathbf{x}]_{1}/r[0, ..., 0]P_{1}
```

- Jointly compute QSMax(x) online
 - g(0) = [1/m, ..., 1/m]
 for i = 1, ..., r do
 - $g(i/r) = g((i-1)/r) + (x \langle x, g((i-1)/r) \rangle 1) * g((i-1)/r)/r$

Jointly invoke secure multiplication π.

- Inner product with *m* dimensions parallelly.
- Element-wise product with *m* dimensions.

[1/m, ... , 1/m

[**p**]_=

 $[p]_1 = [x]_1$

 $[x]_{0} = [x]_{0}/r$

 $[\mathbf{x}]_{1} = [\mathbf{x}]_{1}/r$

[0, ..., 0]

[**X**]_

Jointly compute QSMax(x) online

• g(0) = [1/m, ..., 1/m]
for i = 1, ..., r do

 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)^*g((i-1)/r)/r$

- Jointly invoke secure multiplication π.

- Inner product with m dimensions parallelly.
- Element-wise product with *m* dimensions.
- Secret-shared outputs.
 - P₀ gets [g(1)]₀.
 - P₁ gets [g(1)]₀.

[1/m, ... , 1/m

[**p**]_=

[p]₁= **[x**

 $[x]_{0} = [x]_{0}/r$

 $[\mathbf{x}]_{1} = [\mathbf{x}]_{1}/r$

[0, ..., 0]

[**X**]_

Communication Costs

• Achieved < 10% communication costs in 32 rounds!</p>

Protocol	#Class	Online (bits)	Overall (bits)	Round
ASM protocol	10	-	3M	704
Crypten	10	783K	982K	171
Ours	10	63K	84K	32
ASM protocol	100	-	30M	704
Crypten	100	8.5M	11M	300
Ours	100	616K	821K	32
ASM protocol	1000	-	302M	704
Crypten	1000	86M	108M	430
Ours	1000	6M	8M	32

Experiments & System Performance

- Datasets: MNIST, CIFAR-10
- Models: AlexNet, LeNet, VGG-16, ResNet, Networks A-B-C-D.
- Communication reduces by **57%-77%**.
- Accuracy
 - reaches a higher accuracy for AlexNet, VGG-16 compared with Piranha [Usenix Sec'22].
 - reaches a similar accuracy for Networks A-B-C-D compared with SPDZ-QT [Keller and Sun, ICML'22].
- Training time
 - 10%-60% speed-up in LAN & 56%-78% speed-up in WAN.

Conclusion

- Propose two cryptography-friendly approximations for secure computation of softmax and sigmoid, leading to expedited private training with much lower communication.
- Provide both C++ & Python implementation for different programming preference.
- Shed light on protocol design for bounded nonlinear functions, avoiding unbounded intermediate functions (e^x, 1/x).
- Extend the realm of secure computation to encompass solutions for differential equations with rational polynomial or trigonometric functions coefficients.