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Introduction

« Well-trained DL models have become recognized as valuable intellectual property (IP) for

significant upfront investment during the training process.
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Introduction

« To fully capitalize on the value, owners are often willing to offer their models as services,

as long as they can safeguard their IP rights and receive the corresponding revenue.
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Introduction

Cloud
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Secure multi-party computation (MPC)




Introduction

 Active authorization

o Modifies models and granting correct usage to authorized users
> Prevents models from being stolen by unauthorized users

o Loses subsequent control over the authorized model




Introduction

e Active authorization

o Modifies models and granting correct usage to authorized users
> Prevents models from being stolen by unauthorized users
o Loses subsequent control over the authorized model

 Controllable authorization

o Model owners can grant and revoke the right to use their models
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Design Goals
« Model confidentiality

o Original models cannot be exposed to authorized users

o Encrypted models cannot be restored effortlessly
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o Conduct inference as agreed upon in the contract

o Terminate the authorization in case of any breach of the contract




Design Goals
« Model confidentiality

o Original models cannot be exposed to authorized users

o Encrypted models cannot be restored effortlessly
* Model controllability

o Conduct inference as agreed upon in the contract

o Terminate the authorization in case of any breach of the contract
- Minimal latency and resource consumption

o Satisfy the response-time requirements of real-life applications

o Applicable on resource-constrained devices




Challenge

« Difficulty in confidentiality and efficient execution of the deployed model

o Existing methods cannot resist cracking or fine-tuning attacks

o Cannot decrypt the entire model straightforwardly within TEE since the limited memory

Model size

Q AlexNet 200 MB

ResNetl152 230 MB

VGG16 500 MB

Enclave 128MB

Unprotected Memory Limited protected Memory




Challenge

 Uninterrupted and inescapable model controllability on remote devices

o Existing works cannot offer such controllability after the distribution of models

o The owner needs to maintain the connection with the decrypted model
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System Overview

* Generates deployment materials on the owner's side

o Pre-signed contract -> Encryption key & Encrypted model & Enclave code

e Performs controlled inference on the user's side

o Enclave initialization -> Inference for a specified period as per the contract

Model Owner Side
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Confidentiality

« Encryption requirements of controllable authorization

o Compatible with the SGX-based DL inference

o No loss of inference accuracy after decryption > Layer-wise model encryption
with baker mapping

o Uncrackable with reasonable time and effort cost




Confidentiality

« Encryption requirements of controllable authorization

o Compatible with the SGX-based DL inference

Layer-wise model encryption
with baker mapping

o No loss of inference accuracy after decryption >

o Uncrackable with reasonable time and effort cost
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Controllability

 Contract-based code generation

o Ensure the remote device performs a series of intended operations
o Ensure the corresponding user codes are not tampered with J

o Pre-generated and verifiable enclave codes J




Controllability

 Contract-based code generation

o Ensure the remote device performs a series of intended operations
o Ensure the corresponding user codes are not tampered with J

o Pre-generated and verifiable enclave codes J
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Controllability

e Controlled model inference

o Dynamically load the needed encrypted weights
o Parallelly pipeline: integrity check / decryption/ inference

o Promptly upload the current usage status
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Evaluation
1) How is the efficiency and security of model encryption?

o Baseline 1: straightforward encryption method: Deep Lock

o Baseline 2: mapping encryption method: Chaotic Weights
2) Can DeepContract run DNN within SGX’s memory limit?

3) How much is the overhead of DeepContract?

o Baseline 1: in-enclave inference: Occlumency

o Baseline 2: secure two-party computation using HE/MPC




Evaluation

1) How is the efficiency and security of model encryption?

Decryption Speed Scheme ~ VGG16 ResNetl8 ResNet50 ResNet101
DeepLock [2]  23.53 17.60 37.52 69.41

> 8.9x faster than DeepLock ChaoW [30]  5.14 5.22 13.43 20.23
DeepContract 1.58 1.42 9.82 15.21

o 2.4x faster than ChaoW
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Evaluation

1) How is the efficiency and security of model encryption?

Resistance to fine-tuning attacks

— — - Original ChaoW's key-1 ChaoW's key-2 ChaoW's key-3

— — - Original ChaoW's key-1 ChaoW's key-2 ChaoW's key-3
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Dataset Proportion Dataset Proportion

Dataset Proportion Dataset Proportion

(a) VGG-16 (b) ResNet-18 (c) ResNet-50 (d) ResNet-101

Encrypted models cannot be restored to unacceptable accuracy

even with staggering proportion (25%-30%) of the training dataset!




Evaluation
2) Can DeepContract run DNN within SGX’s memory limit?

Memory limit
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The maximum memory usage is always under

the available Enclave Page Cache memory size of SGXv1.




Evaluation

3) How much is the overhead of DeepContract?

Inference Speed

o 23% slower than Occlumency (Not protecting model weights)

o 8%-13% slower at more relaxed security levels
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Evaluation

3) How much is the overhead of DeepContract?

Compared to cryptographic methods

o More real-time inference

o Only minor data transfer required

Stage Data Size Frequency
Encrypted Model ~ 90.7 MB _ -
Deployment Enclave Codes 92.6 MB Once in an authorization
Authorization Key 1.5 KB . -
h
o Hash Values 21 KB Once in an authorization
Transmission
Attestation Message 3.1 KB Once in a verification cycle
Usage Status 0.2 KB y

Scheme Framework MNIST CIFAR-I0
Run Time (s) Data Transfer (MB) Run Time (s) Data Transfer (MB)
HE SHE [33] 9.3 123 2258 160
HE LoLa [4] 2.2 18 730 370
MPC EzPC [7] 5.1 501 265.6 40683
MPC Chameleon [40] 2.24 11 52.67 2650
MPC XONN [39] 0.15 32 5.79 2599
HE-MPC  nGraph-HE2 [3] 64.32 51 1824 3775
HE-MPC  MiniONN [32] 9.32 658 544 9272
HE-MPC Gazelle [23] 0.81 70 12.9 1236
TEE DeepContract 0.13 0.0041 0.18 0.0045
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