
Fuzzing for Smart Contract Interworking Security Evaluation: An
Empirical Evaluation of the State of the Art
Simone Zerbini

simone.zerbini@unipd.it
Università degli Studi di Padova

Padova, Italy

Sahil Kharya
skharya@asu.edu

Arizona State University
Tempe, Arizona, USA

Dragan Boscovic
dragan.boscovic@asu.edu
Arizona State University
Tempe, Arizona, USA

Eleonora Losiouk
eleonora.losiouk@unipd.it

Università degli Studi di Padova
Padova, Italy

ABSTRACT
The smart contract development provides various features and so-
lutions to the end user including transparency, immutability and
many more. They play a pivotal role in building various decentral-
ized applications such as DeFi platforms and have shown a tremen-
dous growth with a large sum of money being circulated. With
the vast adoption, various vulnerabilities arises, causing serious
concerns with the security and resulting in huge financial loss. To
mitigate these issues, several researches have been conducted and
different testing methodologies are utilized to find and resolve the
vulnerabilities. In this paper, we look into one of the testing method
called fuzzing for the discovery of vulnerabilities in smart contracts.
Our research embarks on a comprehensive investigation of modern
fuzzing tools, emphasizing their capability to analyze interacting
contracts and handle complex contract deployment steps. Both
these features are fundamental for properly analyzing large multi-
contract projects, which are becoming increasingly common in the
web 3.0 technologies scenario. This research highlights the tools’
effectiveness, and ability to analyze large multi-contract projects,
shedding light on their limitations.

CCS CONCEPTS
• Security and privacy→ Software and application security; •
Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Smart Contracts, Fuzzing, Blockchain

ACM Reference Format:
Simone Zerbini, Sahil Kharya, Dragan Boscovic, and Eleonora Losiouk.
2023. Fuzzing for Smart Contract Interworking Security Evaluation: An
Empirical Evaluation of the State of the Art. In Proceedings of WEB3SEC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WEB3SEC’23, December 2023, Texas
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Workshop Encouraging Building Better Blockchain Security (WEB3SEC’23).
ACM, Austin, Texas, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Smart contracts are self-executing contracts in which the conditions
or terms of the agreement are expressed as lines of code. These con-
tracts are executed in a transparent, unreachable, and decentralized
manner through the use of blockchain platforms like Ethereum.
Smart contracts are essential in the field of blockchain technology
for enabling safe and decentralized transactions. However, thor-
ough testing techniques are required due to the complexity of smart
contracts and the possibility of security flaws. With the growing
adoption of Web 3.0 technologies, ensuring their security and cor-
rectness is paramount. Fuzzing is one technique that is gaining
popularity for finding possible flaws in smart contracts by subject-
ing them to a barrage of random inputs. It’s a quick, effective, and
brute-force method of testing edge cases and scenarios. Fuzzing
presents several challenges such as code coverage or the creation
of meaningful inputs; in addition, the state-based nature of smart
contracts introduces new challenges. In recent years, many new
fuzzing tools for smart contracts have been proposed with the in-
tention of solving these challenges [14, 31, 25, 19, 4, 27, 34, 16].
However, these works often focus heavily on the performance of
the proposed new tool, such as code coverage an detection rate,
neglecting other very important aspects such as the level of human
intervention required by the tool or the ability to analyze large
multi-contract projects.

In this paper, we present an overview of the vulnerabilities that
can affect a smart contract and the most relevant fuzzing tools
currently available (including some very recent ones) [14, 31, 25,
19, 4, 27, 34, 16]. Afterwards, an empirical evaluation of 5 of these
fuzzing tools was conducted, namely Echidna [14], ItyFuzz [27],
ConFuzzius [31], EF/CF [25] and Smartian [4]. Unfortunately, it was
not possible to perform this evaluation on every tool since some
of them were not fully available. In particular, this evaluation was
focused on the capability to analyze interacting smart contracts
and to handle projects that require complex steps for deployment.
Both these features are fundamental for properly analyzing large
multi-contract projects.

The capability to properly model and analyze interacting smart
contracts is critical because there might exist some contract states
that can only be reached by interacting with a second contract.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WEB3SEC’23, December 2023, Texas Simone Zerbini, Sahil Kharya, Dragan Boscovic, and Eleonora Losiouk

On top of that, a contract could present a vulnerability only in
one of these states. In this scenario, if the fuzzing tool fails to
model properly the interaction between contracts, it will not be
able to reach the vulnerable state, i.e. it will not be able to detect the
vulnerability. Contract state refers to the values of the contract’s
persistent variables, which affect the behavior of the contract itself.
The empirical evaluation of this aspect was carried out through
6 test cases designed to highlight the limitations of the tools in
analyzing interacting smart contracts. Each test case contains an
artificial vulnerability, which can be triggered only by a specific
sequence of transactions involving multiple contracts. It should be
noted that our test cases all contain the same artificial vulnerability,
because we are not interested in the vulnerability itself but in the
way it is triggered.

The ability to handle complex deployment steps is vital since
contracts often require some specific operations to be deployed
(such as constructor parameters, function calls, storing addresses of
other contracts) and sometimes (especially in a large project) they
can become very complex. These operations affect the internal state
of the contracts and must therefore be taken into account during
fuzzing analysis. For this reason, we looked for features that allow
the contracts under analysis to be set to a specific initial state. We
based the evaluation of this aspect on our observations gathered
during the previous analysis and on the information collected from
papers and documentations.

The rest of the paper is structured as follows. In Section 2 we dis-
cuss the related work. Section 3 gives some knowledge about smart
contracts and fuzzing. Section 4 gives an overview about smart
contracts vulnerabilities. The fuzzing tools are described briefly in
Section 5. Section 6 presents our methodology and test cases. In
Section 7 we discuss our results. Finally, Section 8 concludes the
paper.

2 RELATEDWORK
Smart contracts validation is a very active research field. Many
fuzzing tools have been proposed in recent years [14, 31, 25, 19,
4, 27, 34, 16]. Beyond fuzzing, other techniques have been widely
exploited, such as symbolic execution [20, 32, 21, 23, 24, 22] and
static analysis [12, 3]. These papers, however, only compare the
performance of the different solutions, ignoring other aspects that
are very important, especially in a production environment. In
Durieux et al. [8] a survey of several validation tools followed by
an empirical evaluation is presented, but even this survey only
evaluates performance.

In recent years, many survey papers focusing on various aspects
of smart contract security have been published. These include re-
views of the potential smart contracts vulnerabilities [2, 29] and
the tools used to test their security [1, 5, 8, 30, 26, 15]. But most of
these surveys simply conduct a review of the literature.

In this work, we aim to test important features such as the level
of automation, and the capability to analyze large multi-contract
projects. For the moment, we have limited ourselves to evaluat-
ing only fuzzing tools, but we aim to extend the work to other
techniques as well.

3 BACKGROUND
3.1 Smart Contracts
Smart contracts are the programs which are used for developing
decentralized applications (DApps) on top of blockchain’s consen-
sus protocols. These contracts facilitate users to craft and uphold
agreements on the blockchain, substantially diminishing the need
for trust in third-party intermediaries. Among various blockchain
layers available, Ethereum is the most popular and commonly used
blockchain. It is layer-1 chain and works on the Ethereum Virtual
Machine(EVM). To utilise the features of EVM, smart contracts
are developed using a dedicated high-level programming language,
such as Solidity, that compiles into low-level bytecode. After devel-
oping a smart contract with the required definitions, it is deployed.
The contract definitions are final and cannot be removed or updated
after deployment, making smart contracts essential in facilitating
secure and decentralized transactions.

Utilizing the smart contracts, users can develop decentralized
applications(DApps). DApps are complex systems that include both
frontend and backend elements. At its heart, smart contracts serve
as the application’s backbone, defining its logic and procedures. On
the other hand, the user interfaces, which are designed with end
users in mind, make up the frontend and make the DApp’s services
accessible and usable.

3.2 Fuzzing
Fuzzing is an automated testing technique that involves generating
a large number of semi-random inputs and then submitting them to
a system to identify vulnerabilities. It is a fast and efficient way to
test edge cases and scenarios that might not be considered during
manual testing.

Unfortunately, fuzzing presents some unsolved challenges, such
as code coverage. The term code coverage refers to the portion of
the code of the software under analysis that has been reached/tested
by the fuzzing tool. Often software contains pieces of code that are
triggered only if a specific condition is met. The problem is that,
if the fuzzing tool cannot pass these conditions, a large portion of
the code will not be tested, thus compromising the efficacy of the
analysis. Another common challenge is the creation of meaningful
inputs. In fact, whenever the (pseudo)random generation of a new
input fails in creating a valid one, the analysis will make no progress,
thus wasting time.

Moreover, the smart contracts scenario presents different chal-
lenges. Although the amount of source code of most smart contracts
is trivial compared to complex software like browsers and operat-
ing systems, they are stateful and have complex dependencies with
other smart contracts [27]. In fact, the behavior of smart contracts
depends on their internal state and the state of the blockchain.
These states, especially the contract state, change depending on the
order and parameters of called functions. This means that it is no
sufficient for the fuzzing tool to generate a single valid input but,
instead, it is required a sequence of valid inputs. Furthermore, this
also implies that, in order to comprehensive analyze a smart con-
tract, it is not sufficient to extensively test all functions but, instead,
it is required to extensively test all functions with all possible states
that the contract can assume.

2

Fuzzing for Smart Contract Interworking Security Evaluation: An Empirical Evaluation of the State of the Art WEB3SEC’23, December 2023, Texas

4 SMART CONTRACTS VULNERABILITIES
In this section, we give an overview of the vulnerabilities that can
affect a smart contract. It should be noted that these are vulnerabil-
ities of universal relevance and that a smart contract might present
other bugs or vulnerabilities specific to its application scenario.

4.1 Integer Overflow and Underflow
Integer overflows or underflows occur, and the result becomes an
unexpected value. In an overflow, a value becomes too large and
wraps around, resetting at a low number. In underflow, it is the
opposite: a value goes below what is allowable and wraps to a high
number. It often occurs when a developer disregards the variable’s
bounding value, leading to a value that exceeds either the upper or
lower bound of the variable. This vulnerability can help an attacker
to transfer many tokens at a cheap rate. The SafeMath library in
Solidity should be used to prevent the issue of integer overflow and
underflow.

4.2 Reentrancy
A function in a victim contract is re-entered and leads to a race
condition on state variables. It is a technique for exploiting smart
contracts that enables an attacker to repeatedly call a contract
function (similar to recursive call of a function), creating an endless
loop, until the gas is exhausted or the balance depletes completely
and perhaps stealing money. Reentrancy was exploited in the DAO
attack, i.e. the biggest attack on Ethereum smart contracts [33].

4.3 Transaction order dependency
Transaction order dependency means carrying out the transactions
in a defined sequence so that to get a required result [20]. Inconsis-
tent transactions execution with respect to the time of invocations
may deliver different results. Usually, several transactions are col-
lected together into blocks on blockchains, and the transactions
inside a block are not necessarily handled in the order they were
received. This is because miners can select randomly a transaction
from the block based on the high gas price. Benefiting from this
flaw, an attacker attacks by introducing a transaction with high
gas cost based on the visible pending transactions in order to gain
control of a known outcome.

4.4 Block State Dependency
Block states (e.g. timestamp, number) are often used in smart con-
tracts for various purposes, such as determining the time elapsed
between events or generating random numbers. It can also decide
ether transfer of a contract. (ormodify the behavior of an instruction
create, call, delegatecall, or selfdestruct). A miner might possibly
change the timestamp by several seconds, and a contract’s process
may be predictable if it relies entirely on block properties. These
conditions make the smart contract vulnerable. By changing the
block timestamps directly, malicious actors (miners) can take ad-
vantage of the vulnerability when a smart contract transfers ETH
using block.timestamp, creating the ideal environment for their
own success [19]. Whenever possible, avoid using block.timestamp
or block.number for critical decision-making processes. Another
way would be to use a reliable algorithm for the production of
random numbers.

4.5 Exception Disorder
A contract does not check for an exception when calling external
functions or sending ether [20]. The vulnerability is caused by calls
between smart contracts using functions such as <address>.send,
<address>.call.value, or calling methods of other contracts using
statements such as call. Running out of gas, for example, might
cause an exception to the call, in which case the call would end and
the state will roll back, returning false to the calling contract. To
mitigate, its suggested to use revert to revert all changes in case
of failure. Refrain from using low-level calls, one can use.transfer()
rather than.call(), which produces an exception upon failure and
halts execution.

4.6 Control-Flow Hijack
An attacker can arbitrarily control the destination of a jump or
delegatecall instruction [19]. The delegatecall function is a pow-
erful feature in Solidity, allowing one contract to execute code in
the context of another contract. Delegate calls are critical in terms
of smart contract security because the logic in the callee contract
might change the storage of the caller contract. While using dele-
gatecall, ensure the state variables are declared in the same order
to prevent unnecessary updates to other state variables which can
provide the base for the attacker.

4.7 Leaking Ether
A contract allows an arbitrary user to freely retrieve ether from the
contract [23]. It happens because of a flawed logic or insufficient ac-
cess constraints that let unauthorized individuals to freely withdraw
the ether from the contract without having owner rights. It results
in financial loss and operational disruption as well as makes a dent
in user’s trust. Few mitigation strategies include using modifiers
to restrict access, limiting exposure to ether with withdrawal limit,
and most important auditing and testing for the smart contract.

4.8 Locking Ether
A contract can receive ether but does not have any means to send
it out [23]. Ether will become locked in the contract indefinitely
if the contract receiving the ether provides a fallback mechanism
that prevents ether from being withdrawn or a function that locks
the ether without enabling it to be withdrawn. In this case, ether
becomes unintentionally trapped in a smart contract, rendering it
inaccessible and essentially removing it from circulation. This has
resulted in a huge loss for various users.

4.9 Unprotected self-destruct
An arbitrary user can destroy a victim contract by running a selfde-
struct instruction [23]. Since, the contracts once deployed, it cannot
be updated and will continue to to function as defined before de-
ployment, Solidity provides a selfdestruct() function which allows
the owner to destroy the contract if something went wrong. How-
ever, if a smart contract with an unprotected self-destruct function
lacks proper permission control, any user can potentially exploit
this vulnerability to call the self-destruct function and transfer
the contract’s Ether to their desired address, leading to funds loss.
Thus, the proper permission controls should be implemented for
important functions like selfdestruct.

3

WEB3SEC’23, December 2023, Texas Simone Zerbini, Sahil Kharya, Dragan Boscovic, and Eleonora Losiouk

4.10 Arbitrary Write
An attacker can overwrite arbitrary storage data by accessing a
mismanaged array object. This can lead to overwriting of adjacent
storage slots that might hold other critical state variables. This may
disrupt the contract’s intended logic and result in monetary losses
or other unforeseen consequences. We must make sure that the
given index is within the boundaries of the array in order to reduce
this risk. In addition, the use of modifiers can limit access or verify
conditions before a function is called.

4.11 Multiple Send
A contract sends out ether multiple times within one transaction,
especially in loops. This is a specific case of DoS. It can lead to
various problems like if the transaction exceeds the block’s gas
limit, then it will fail. Also, a malicious actor could exploit all the
calls in a loop by making high gas costs leading to a failure of
the complete transaction. This vulnerability may also cause the
contract to be in an inconsistent state.

4.12 Transaction Origin Use
A contract relies on the origin of a transaction (i.e. tx.origin) for
user authorization. The problem is that tx.origin does not always
correspond to the direct caller of a function, this can lead to a form
of phishing attack that can drain a contract of all funds. To prevent
this vulnerability, it is advisable to use msg.sender instead of the
tx.origin.

5 TOOLS REVIEW
In this section we briefly describe some of the most relevant existing
fuzzing tools. We have evaluated only Echidna, ItyFuzz, ConFuzzius,
EF/CF, and Smartian but, for the sake of completeness, we also
provide descriptions of other relevant tools.

5.1 Echidna
Echidna [14, 9] is an open-source Ethereum smart contract fuzzer
published by Trail of Bits. Echidna leverages Slither [12], a smart
contract static analysis framework, to compile the contracts and
analyze them to identify useful constants and functions that handle
Ether directly. After this pre-processing step, the fuzzing campaign
starts. Rather than relying on a fixed set of pre-defined bug oracles
to detect vulnerabilities, Echidna supports three types of properties:
user-defined invariants, assertion checking, and gas use estimation.
Currently, Echidna can test both Solidity and Vyper smart contracts.

One of the main goals in developing of Echidna, was to make it
easy to use, configure and integrate into the contract development
workflow. This makes it one of the best options in a production
environment. In addition, several tools are supplied by Echidna in
order to deal with complicated contracts, for example Etheno [11].
Etheno is a tool aimed at removing the complexity of setting up
Echidna on large multi-contract projects. It can be used to record
the sequence of operations required to deploy the DApp so that
Echidna has a good starting point.

5.2 ItyFuzz
ItyFuzz [27, 18] is a snapshot-based fuzzing tool. Snapshots are
essentially replicas of intermediate states of the contracts. By stor-
ing all interesting snapshots, ItyFuzz can “time travel” to previous
states without re-executing the operations required to build them
up. Time traveling allows for efficient exploration for search space
of both transactions and states. ItyFuzz offers different ways to
handle complex deployment steps, such as the option to assign a
specific address to each contract, or the ability to take a snapshot of
a state pulled from a specific block from any blockchains supporting
Geth client. In addition, ItyFuzz provides both an exhaustive bug
oracle and the support for user-defined invariants.

5.3 ConFuzzius
ConFuzzius [31, 6] is an hybrid fuzzer which combines fuzzing and
symbolic execution. Symbolic taint analysis is employed to generate
path constraints on tainted inputs. The moment the fuzzer stops
progressing, a constraint solver is deployed to solve the constraint in
question. These solutions are collected within a mutation pool, from
which the fuzzer can draw to move past the challenging contract
condition.

ConFuzzius models the return values of calls to other contracts
as fuzz-able inputs. The same thing is done for the blockchain state,
which contains values such as block number and block timestamp.
Moreover, it implements an exhaustive bug oracle but it does not
support user-defined invariants.

5.4 EF/CF
Extremely Fast Contract Fuzzer (EF/CF) [25, 10] is not only a fuzzing
framework but also an exploit generator. EF/CF holds true to its
name; in fact, it can reach in seconds sections of code that the other
tools take hours to reach. In contrast to other fuzzing tools that rely
on heuristics to detect reentrancy vulnerabilities, EFCF simulates
the behavior of multiple attacker-controlled smart contracts. In
this way, the response of EF/CF will be much more accurate about
the actions needed to trigger the vulnerability. In order to achieve
better code coverage and make the tool scale even on more complex
contracts, EF/CF bets on speed, that is, on generating new inputs
as fast as possible. To increase the fuzzing throughput, EF/CF trans-
lates the Ethereum virtual machine (EVM) bytecode to equivalent
C++ code and uses a high-performance coverage-guided fuzzer
(AFL++ [13]). EF/CF utilizes a simple yet powerful bug oracle based
on Ether gains. In addition to detecting unprotected self-destruct
and control-flow hijack vulnerabilities, this bug oracle monitors
the ether balance of the attacker-controlled contracts. If the sum of
the balances exceeds the initial value, then an attack has occurred.
However, this oracle do not cover all current smart contract security
issues. In order to extend EF/CF to cover smart contract specific
bugs, EF/CF allows developers to define custom bug oracles in their
Solidity code.

Similarly to ConFuzzius, EF/CFmodels the state of the blockchain
and the values returned by other contracts as fuzz-able inputs.

4

Fuzzing for Smart Contract Interworking Security Evaluation: An Empirical Evaluation of the State of the Art WEB3SEC’23, December 2023, Texas

5.5 Smartian
Smartian [4, 28] is a fuzzing tool that leverages static analysis to
identify significant transaction sequences by the data dependen-
cies between functions and persistent state variables. The idea is
that a transaction that modifies the state variables of a contract is
more interesting because it can help reach deeper contract states.
Smartian provides an exhaustive bug oracle but it does not support
user-defined invariants. Moreover, it cannot analyze interacting
smart contracts nor handle complex deployment steps.

5.6 Harvey
Harvey [34] is an industrial fuzzer developed by ConsenSys. It is
used at ConsenSys both for smart-contract audits and as part of
MythX, an automated contract analysis service. It has analyzed
more than 3.3M submitted contracts from March 2019 to April
2020 and has found hundreds of thousands of issues. Unfortunately,
Harvey is not open source.

5.7 ILF
ILF [16, 17] is a fuzzing tool based on the imitation learning concept.
More specifically, in order to generate good inputs, the fuzzer lever-
ages a neural network trained on a dataset of inputs obtained by
running a symbolic execution expert on tens of thousands of con-
tracts. In this way, the fuzzer can combine strengths of both fuzzing
and symbolic execution - it generates effective inputs quickly. Un-
fortunately, the training set is not provided along with the tool.

ILF supports fuzzing multiple interacting contracts that are de-
ployed on the local test blockchain. It implements a bug oracle
which, even if it does not cover all vulnerabilities, can be expanded.

5.8 ContractFuzzer
ContractFuzzer [19, 7] is the first tool applying fuzzing techniques
to smart contracts for vulnerability detection. ContractFuzzer does
not provide the support for user-defined invariants, but only a quite
limited bug oracle. Moreover, it cannot analyze interacting smart
contracts nor handle complex deployment steps.

6 METHODOLOGY
Our goal was to evaluate fuzzing tools on 2 aspect: the capability to
properly analyze interacting contracts, and the capability to handle
project with complex deployment steps. For the first aspect, we
based our evaluation on 6 test cases. These test cases are designed
to stress the tools and highlight their limitations, but at the same
time they represent very trivial and common contract interaction
patterns. In fact, most test cases simply consist of a contract that
switches behavior based on the value returned by a function call
to another contract. Although these test cases are very simple (1
or 2 functions each), we will see that they are enough to pose a
challenge to most fuzzing tools. In each test case we placed a vul-
nerability, in particular, we chose to use unprotected self-destruct.
This choice was made because we needed a vulnerability that could
be easily detected by all tools and that we could easily insert at
our convenience. The type of vulnerability adopted is not relevant
since we are more interested in the sequence of operations needed
to trigger it than in the detection of the vulnerability itself.

Figure 1: Diagram representing the White test case.
Transactions sequence for vulnerability: White.a(),

White.b().

Figure 2: Diagram representing the Green test case.
Transactions sequence for vulnerability: Lime.a(), Green.b(),

Green.c().

For the second aspect, that is the capability to handle project
with complex deployment steps, we looked for features that allow
the contracts under analysis to be set to a specific initial state. We
based the evaluation of this aspect on our observations gathered
during the previous evaluation and on the information collected
from papers and documentations.

6.1 Test case White
This first test case consists of a simple contract in which we placed
the vulnerability, as shown in Figure 1. TheWhite test case was used
mainly to verify that the tools were able to detect the vulnerability
we chose and that they were set up properly.

6.2 Test case Green
This test case, as shown in Figure 2, consists of 2 interacting con-
tracts: Green and Lime. The Green contract contains the vulnera-
bility, but it can only be triggered if a certain function of the Lime
contract is invoked first. The addresses of the contracts are hard-
coded into the constructor. In this case, the vulnerability can be
detected even if the fuzzing tool does not execute the code of the
second contract (Lime), but generates random return values. This
is why the following Black test case was created.

6.3 Test case Black
This test case, as shown in Figure 3, consists of 2 interacting con-
tracts: Black and Gray. The Black contract contains a vulnerability
that can only be triggered if the Gray contract returns True. The
Gray contract, however, will always return False. So, actually, there
is no vulnerability. Contract addresses are hardcoded into the con-
structor. In this case, if the fuzzing tool does not execute the code of

5

WEB3SEC’23, December 2023, Texas Simone Zerbini, Sahil Kharya, Dragan Boscovic, and Eleonora Losiouk

Figure 3: Diagram representing the Black test case. The
vulnerability cannot be triggered.

Figure 4: Diagram representing the Red and Scarlet test
cases. Transactions sequence for vulnerability:

Red.set_color(attacker or scarlet address), Red.a(), Red.b().

the second contract (Gray) but simply returns random values, the
vulnerability will be detected. It will, however, be a false positive.

6.4 Test case Red
This test case, as shown in Figure 4, consists of 2 interacting con-
tracts: Red and Crimson. The Red contract contains a vulnerability
that can only be triggered if the Crimson contract returns True. The
Crimson contract, however, will always return False. This test case
is similar to the previous one, but in this case the address of the
Crimson contract is passed to the Red contract via a public method.
This opens up the possibility for an attacker to create a third con-
tract that presents the same interface of the Crimson contract but
returns True instead.

6.5 Test case Scarlet
The Scarlet test case is almost the same as the previous one, but
this time there is also the code of a third contract (Scarlet) with the
same interface as the Crimson contract, but which returns True.

6.6 Test case Blue
In the Blue test case, as shown in Figure 5, the vulnerability is
hidden behind a fallback function. We implemented 2 contracts:
Blue and Cyan, with the vulnerability triggered by the receive
and fallback functions respectively.

7 RESULTS
The results obtained from the analysis on our test cases are reported
in Table 1. It is evident from the table that Echidna and ItyFuzz are
the only tools capable of analyzing multiple interacting contracts.
Moreover, it can be noted that Echidna fails in analyzing test case
Red, while ItyFuzz succeeds. This indicates that Echidna fails to

Figure 5: Diagram representing the Blue test case.
Transactions sequence for vulnerability: Blue.fallback(),

Blue.a().

Tool White Green Black Red Scarlet Blue
Echidna 1 1 1 0 1 1
ItyFuzz 1 1 1 1 1 1

ConFuzzius 1 x 0 0 0 1
EF/CF 1 x 0 x x 1

Smartian 1 0 0 0 0 1
Table 1: This table shows the result obtained with our em-
pirical evaluation: 1 = Success, 0 = Fail, x = bug detected but
incorrect tx sequence.

theorise the existence of other contracts outside of those provided
during the analysis, this capability makes ItyFuzz’s analysis much
more powerful.

Still regarding test case Red, we can see that EF/CF manages to
detect the bug, even though it provides an incorrect transaction se-
quence. This is due to the use of an approximation in the interaction
between contracts. This approximation causes incorrect transaction
sequences (as in Green, Red and Scarlet) and several false positives
(as in the case of Black), but, in test case Red, it succeeds in alerting
the developer where Echidna fails.

In Table 2, a summary of the features provided by each tool is
given. Bug Oracle refers to the capability to detect known bugs of
universal validity, such as those described in section 4. It can be
seen that Echidna is the only tool that lacks a bug oracle. This is
a major shortcoming of Echidna, since it assumes that developers
are aware and updated on all vulnerabilities and are able to define
rules that cover all of them.

The Invariants column refers to the capability to define custom
rules that must always be respected during execution. This allows
developers to verify that the contract never reaches states that are
considered faulty. This is a critical feature since a generic bug oracle
may not be sufficient to detect errors specific to the contract.

By Complex Deploy we refer to the capability to analyze DApp
consisting of multiple smart contracts, and thus requiring complex
deployment and set up operations. Echidna provides this feature
with the help of Etheno, while ItyFuzz thanks to its snapshot-based
architecture.

Finally, the last column summarizes the results obtained through
our evaluation regarding the capability to analyze multiple inter-
acting contracts.

This table shows that Echidna and ItyFuzz are the most compre-
hensive tools, with only ItyFuzz providing all the features.

6

Fuzzing for Smart Contract Interworking Security Evaluation: An Empirical Evaluation of the State of the Art WEB3SEC’23, December 2023, Texas

Tool Bug Ora-
cle Invariants Complex

Deploy
Inter-
Contract

Echidna No Yes Yes Yes
ItyFuzz Yes Yes Yes Yes

ConFuzzius Yes No No No
EF/CF Yes Yes No No

Smartian Yes No No No
Table 2: Summary of our tools evaluation.

8 CONCLUSIONS
In conclusion, we reviewed some of the most relevant smart con-
tract fuzzing tools currently available. In addition, an empirical
evaluation was conducted on their capability to correctly analyze
interacting contracts and to handle large projects that require com-
plex deployment steps. Our research points out that most of the
existing tools fail in providing some important functionality, such
as the ability to properly model interacting contracts and the ability
to handle complex deployment steps. Therefore, even if these tools
offer good performances and vulnerabilities detection rates, they
are unlikely to be adopted in a real production scenario.

As future work, we plan to extend our analysis to other software
sanitation techniques such as symbolic execution or static analysis.

REFERENCES
[1] Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and Abdelhamid

Mellouk. 2020. Verification of smart contracts: a survey. Pervasive and Mobile
Computing, 67, 101227.

[2] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on ethereum smart contracts (sok). In Principles of Security and Trust: 6th Inter-
national Conference, POST 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings 6. Springer, 164–186.

[3] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: a scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981.

[4] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. Smartian: enhancing smart contract fuzzing with static and
dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 227–239.

[5] Hanting Chu, Pengcheng Zhang, Hai Dong, Yan Xiao, Shunhui Ji, and Wenrui
Li. 2023. A survey on smart contract vulnerabilities: data sources, detection
and repair. Information and Software Technology, 107221.

[6] Confuzzius. https://github.com/christoftorres/ConFuzzius.
[7] Contractfuzzer. https://github.com/gongbell/ContractFuzzer.
[8] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical

review of automated analysis tools on 47,587 ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International conference on software engineering,
530–541.

[9] Echidna. https://github.com/crytic/echidna.
[10] Ef/cf. https://github.com/uni-due-syssec/efcf-framework.
[11] Etheno. https://github.com/crytic/etheno.
[12] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE,
8–15.

[13] Andrea Fioraldi, DominikMaier, Heiko Eißfeldt, andMarcHeuse. 2020. {Afl++}:
combining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20).

[14] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 557–560.

[15] Dominik Harz and W Knottenbelt. 1809. Towards safer smart contracts: a
survey of languages and verification methods (2018). URL: http://arxiv. org/abs.

[16] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to fuzz from symbolic execution with application to

smart contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 531–548.

[17] Ilf. https://github.com/eth-sri/ilf .
[18] Ityfuzz. https://github.com/fuzzland/ityfuzz.
[19] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: fuzzing smart

contracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 259–269.

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 254–269.

[21] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: a user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1186–1189.

[22] Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real
profit. https://consensys.io/diligence/files/D1T2%20-%20Bernhard%20Muelle
r%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20a
nd%20ACTUAL%20Profit.pdf.

[23] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th annual computer security applications conference, 653–663.

[24] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen,
and Martin Vechev. 2020. Verx: safety verification of smart contracts. In 2020
IEEE symposium on security and privacy (SP). IEEE, 1661–1677.

[25] Michael Rodler, David Paaßen, Wenting Li, Lukas Bernhard, Thorsten Holz,
Ghassan Karame, and Lucas Davi. 2023. Ef/cf: high performance smart contract
fuzzing for exploit generation. arXiv preprint arXiv:2304.06341.

[26] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. 2020. Smart contract:
attacks and protections. IEEE Access, 8, 24416–24427.

[27] Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. Ityfuzz: snapshot-based
fuzzer for smart contract. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 322–333.

[28] Smartian. https://github.com/SoftSec-KAIST/Smartian.
[29] Xiangyan Tang, Ke Zhou, Jieren Cheng, Hui Li, and Yuming Yuan. 2021. The

vulnerabilities in smart contracts: a survey. In Advances in Artificial Intelligence
and Security: 7th International Conference, ICAIS 2021, Dublin, Ireland, July
19-23, 2021, Proceedings, Part III 7. Springer, 177–190.

[30] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. 2021. A
survey of smart contract formal specification and verification. ACM Computing
Surveys (CSUR), 54, 7, 1–38.

[31] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. Confuzzius: a data dependency-aware hybrid fuzzer for smart contracts.
In 2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
103–119.

[32] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th annual
computer security applications conference, 664–676.

[33] Understanding the dao attack. https://www.coindesk.com/learn/understandin
g-the-dao-attack/.

[34] Valentin Wüstholz and Maria Christakis. 2020. Harvey: a greybox fuzzer for
smart contracts. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 1398–1409.

7

https://github.com/christoftorres/ConFuzzius
https://github.com/gongbell/ContractFuzzer
https://github.com/crytic/echidna
https://github.com/uni-due-syssec/efcf-framework
https://github.com/crytic/etheno
https://github.com/eth-sri/ilf
https://github.com/fuzzland/ityfuzz
https://consensys.io/diligence/files/D1T2%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf
https://consensys.io/diligence/files/D1T2%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf
https://consensys.io/diligence/files/D1T2%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf
https://github.com/SoftSec-KAIST/Smartian
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.coindesk.com/learn/understanding-the-dao-attack/

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Smart Contracts
	3.2 Fuzzing

	4 Smart Contracts Vulnerabilities
	4.1 Integer Overflow and Underflow
	4.2 Reentrancy
	4.3 Transaction order dependency
	4.4 Block State Dependency
	4.5 Exception Disorder
	4.6 Control-Flow Hijack
	4.7 Leaking Ether
	4.8 Locking Ether
	4.9 Unprotected self-destruct
	4.10 Arbitrary Write
	4.11 Multiple Send
	4.12 Transaction Origin Use

	5 Tools Review
	5.1 Echidna
	5.2 ItyFuzz
	5.3 ConFuzzius
	5.4 EF/CF
	5.5 Smartian
	5.6 Harvey
	5.7 ILF
	5.8 ContractFuzzer

	6 Methodology
	6.1 Test case White
	6.2 Test case Green
	6.3 Test case Black
	6.4 Test case Red
	6.5 Test case Scarlet
	6.6 Test case Blue

	7 Results
	8 Conclusions

