
Rapid Deployment of Confidential Cloud Applications with
Gramine

Michał Kowalczyk
Invisible Things Lab

Switzerland
mkow@invisiblethingslab.com

Dmitrii Kuvaiskii
Intel

Germany
dmitrii.kuvaiskii@gmail.com

Paweł Marczewski
Invisible Things Lab

Poland
pawel@invisiblethingslab.com

Borys Popławski
Invisible Things Lab

Poland
borysp@invisiblethingslab.com

Wojtek Porczyk
Invisible Things Lab

Poland
woju@invisiblethingslab.com

Donald E. Porter
UNC — Chapel Hill

USA
porter@cs.unc.edu

Kailun Qin
Intel
China

kailun.qin@intel.com

Chia-Che Tsai
Texas A&M University

USA
chiache@tamu.edu

Mona Vij
Intel
USA

mona.vij@intel.com

Isaku Yamahata
Intel
USA

isaku.yamahata@intel.com

ABSTRACT
Gramine is a leading open-source tool for securely porting unmodi-
fied Linux applications onto Intel® SGX [67]. Gramine implements
the “lift-and-shift” model of confidential computing—where one
simply runs an entire, legacy application in a trusted execution en-
vironment (TEE), such as Intel SGX. Gramine was initially released
as an artifact of the 2014 EuroSys Paper [96], and over the subse-
quent ten years has evolved into a production-ready, open-source
community project, deployed commercially by multiple companies.
Gramine has been used by over one hundred peer-reviewed pa-
pers to facilitate confidential computing research: in some cases,
it is the benchmark against which other systems or TEE design
choices are measured; as a baseline for security analysis or attacks
and, in others, a building block for quick prototyping of applica-
tions in domains including health care, machine learning, genome
analysis, speech processing, networking, autonomous vehicles, IoT
management, and database systems. This short paper describes the
Gramine project and its impact on industry and research.

1 INTRODUCTION
Gramine is an open-source tools for securely deploying unmodified
Linux applications on Intel® SGX [67] and other trusted execu-
tion environments (TEEs). Gramine implements the “lift-and-shift”
model of confidential computing—where one simply runs an entire,
legacy application in the TEE. Figure 1 overviews the Gramine ar-
chitecture [96] and how it is deployed in SGX, specifically. Gramine
reimplements the Linux system call table in a user space library
(hence the name library OS). The heavy black box indicates the
boundary of the trusted code running inside the TEE (enclave). At
the top is an unmodified application binary, followed by supporting
libraries. Some system calls are implemented entirely within the

Library OS, and some request (and dynamically check) function-
ality from the untrusted host kernel. A rare feature of Gramine is
multi-process support, including fork(). Multiple processes are im-
plemented using multiple separate host address spaces and passing
encrypted, signed messages between enclaves. Although message
passing in user-space is slower than an in-kernel implementation
of inter-process communication primitives (IPC), this design choice
avoids placing functionality and trust in the host kernel.

Gramine is designed for Platform Independence; it is imple-
mented against a small, simple ABI (fewer than 50 calls) called
the Platform Adaptation Layer (PAL). The PAL ABI includes
abstractions for memory, threads, files, and devices. In principle, if
one reimplements the PAL ABI on a new host, the rest of Gramine
and supported applications should “just work.”

Although Gramine does not require application code changes or
recompilation, each application does need a signedmanifest file
to specify what data should be loaded into the enclave. The mani-
fest includes hashes of trusted files, as well as other virtualization
parameters.

For running on an untrusted host, as in the SGX threat model,
Gramine adds a shielding layer to the TEE interface (i.e., ecalls
on SGX). Although there are minor differences between the enclave
and PAL ABI, we expect these to consolidate in the future.

Gramine is compatible with multiple remote attestation frame-
works. In the past, Gramine has supported Intel Attestation Service
(IAS), and several protocols based on Intel Data Center Attestation
Primitives (DCAP). As IAS is reaching end of life in 2025, Gramine
is retiring IAS support at the time of writing.

We welcome and encourage contributions of useful changes to
Gramine itself. Gramine is licensed under the LGPL, which does
require users publish modifications to Gramine itself. However,
our understanding in adopting the LGPL is that anyone is free to

https://orcid.org/0000-0002-9804-0857
https://orcid.org/0000-0002-0016-6487
https://orcid.org/0000-0002-5309-0391


Michał Kowalczyk, Dmitrii Kuvaiskii, Paweł Marczewski, Borys Popławski, Wojtek Porczyk, Donald E. Porter, Kailun Qin, Chia-Che Tsai, Mona Vij, and Isaku Yamahata

Executable

User libraries

Library OS

Shielding Layer

...

Manifest + file hashes

Libc loader

Libc

Enclave Platform Adaption Layer

Intel SGX DriverLinux Kernel

System calls
(as functions)

Gramine host ABI

Enclave Interface

System calls

Trusted

Untrusted

Figure 1: The Gramine architecture. The executable is
position-dependent. The enclave includes an OS shield, a
library OS, Glibc, and other user binaries.

use Gramine without sharing any code outside of Gramine; the
obligation to share code stops at the boundary of the library OS.
For instance, using unmodified Gramine to deploy a closed-source
application incurs no obligation to share source code, nor does it
prevent use with code under a different license.

1.1 Container Integration
In order to facilitate application deployment on Gramine, Gramine
includes two tools to automate construction of containers that use
Gramine to run on SGX.

The first feature, called Gramine Shielded Containers (gsc),
automatically converts a Docker image into a version of the image
that can run in Gramine on SGX. Containers, such as Docker, are
now a very common way to package and deploy software. A docker-
file, which describes how to build an application image; a Gramine
manifest has a similar goal of describing the runtime requirements
of an application, and is perhaps one of the most challenging steps
in adopting Gramine.

GSC automatically generates a Gramine manifest from a docker
image, and then creates a new Docker image that includes the
manifest, Gramine, and other required SGX runtime support. GSC
also has the ability to sign the manifest and run the container in
SGX.

The second tool is called Scaffolding for Gramine (SCAG),
and leverages a language runtime or other framework to generate
a Docker image with Gramine. Unlike GSC, SCAG does not require
an initial Docker Image. SCAG is currently compatible with Python,
Flask, Node.js, Express.js, Koa.js, Java JAR files, Java with the Gradle
build system, and .NET. SCAG also automatically adds SSL/TLS to
plaintext networking apps.

These two tools indicate thatmost of the information that Gramine
requires to run an application is already present in most deployment
tools.

2 GRAMINE’S IMPACT
Gramine has been a key enabling technology for confidential com-
puting research and practice to-date. Specifically, Gramine (1) is the
first open-source, lift-and-shift framework; (2) is mature enough
to run a significant number of real-world applications; (3) has a
broad user base; and (4) has a growing contributor community.
Gramine has been used by over one hundred peer-reviewed papers
to facilitate confidential computing research: in some cases, it is the
benchmark against which other systems or TEE design choices are
measured [13, 19, 22, 27, 32, 34, 37, 47, 48, 50, 60, 83, 84, 90, 91, 94];
a baseline for security analysis or attacks [3, 4, 17, 18, 23, 24, 39,
49, 56, 63, 72, 81, 88, 95, 98, 99, 103]; and, in others, a building
block for quick prototyping of applications in domains including
health care, machine learning, genome analysis, speech processing,
networking, autonomous vehicles, IoT management, and database
systems [2, 5, 6, 12, 14–16, 25, 26, 33, 36, 38, 40–43, 45, 51–53, 57–
59, 61, 62, 64–66, 68, 71, 74, 77–79, 85–87, 93, 97, 100–102, 104–108].

On the industry side, Gramine had its first production release
in late 2021 and we are aware of at least six companies developing
products built on Gramine. We keep a list of Gramine users online 1.
One example of Gramine’s utility is IBM’s ePrescription system,
which is used by the German Ministry of Health to track prescrip-
tions across the entire German population. Several cloud service
providers have built solutions for SGX involving Gramine, includ-
ing Tencent, JD Cloud, ByteDance, and Microsoft. Several start-ups
use Gramine in their solutions; for instance, Edgeless [92] uses
Gramine to secure blockchain infrastructure for banks. Gramine
is used internally at Intel for validating and benchmarking SGX
CPUs, and for internal services.

One major class of applications where Gramine has gained trac-
tion is in secure machine learning infrastructures. The OpenFL
federated learning project has been built using Gramine [85]. The
BigDL large language model framework integrates standard ma-
chine learning tools, such as Tensorflow and Pytorch, with sys-
tem security features such as SGX and Gramine [9]. Simiarly, the
OpenVINO machine learning toolkit for AI inference includes a set
of security add-ons that also include SGX support, facilitated by
Gramine [20]. ByteDance’s support for securing Federated Learning
on SGX in their Fedlearner project is also built upon Gramine [29].

Researchers and developers from Intel and Invisible Things Lab
have joined the leadership team for the project, and Gramine has
received significant code contributions from companies including
IBM and Alibaba Cloud. Gramine has been adopted by the Linux
Foundation’s Confidential Computing Consortium (CCC), which
helps the project with infrastructure, visibility, and mentorship to
build a robust developer community. Gramine is the only project to
go from the incubation to graduation stage [1]. Gramine is also the
only CCC project to date to receive the OpenSSF’s Security Best
Practices Badge [76]. Gramine is a featured open-source enabler in
Microsoft’s Azure Confidential Cloud Services [70].

1https://gramine.readthedocs.io/en/latest/gramine-users.html

https://gramine.readthedocs.io/en/latest/gramine-users.html


Rapid Deployment of Confidential Cloud Applications with Gramine

The overall maturity and utility of the project is also reflected
in various metadata statistics. On github at the time of writing,
the code has 607 stars, 201 forks, and 27 watchers. The original
Graphene repository, now archived, still has 771 stars, 260 forks, and
51 watchers. The ATC paper describing SGX support in Gramine
has 714 citations.

2.1 Evolving with SGX
SGX has evolved substantially since its first version, which made
a number of simplifying assumptions about the workloads. For
instance, the first version of SGX did not allow the program to
dynamically create new mappings inside of a host enclave. This is
a simplification not just for implementation, but reasoning about
security. For instance, the intersection of exception handling and
scheduling controlled by an untrusted host require careful reason-
ing about race conditions in how the TEE code is invoked; the
recent AEX-Notify feature in SGX supports more efficient excep-
tion handling and can be used to help enclave code defend itself
from side-channel attacks that leverage interrupts [21].

Gramine has both ongoing and completed efforts to stay abreast
of new SGX versions. In the case of dynamic memory manage-
ment, Gramine has basic support for the Enclave Dynamic Memory
Management (EDMM) feature, and work is in progress to optimize
performance of dynamic mappings in Gramine. Work is in progress
to merge AEX-Notify support. Gramine has also merged support
for using ioctl to communicate with computational accelerators
in order to offload computation [54].

2.2 TEEs Beyond SGX
Although the Gramine project has focused supporting applications
on SGX, the original design of Gramine predates SGX. Gramine was
originally designed to simplify porting code from one platform to
another. Gramine has amodular architecture that encapsulates most
host-specific (or TEE-specific) code into a platform adaptation layer
(PAL), which is designed for ease of implementation. In principle,
to support a new TEE, one only need to implement a suitable PAL
for the new TEE. Even if SGX were to fall out of usage, Gramine can
be viewed as a general-purpose Linux compatibility layer, which
can be still useful in deploying legacy Linux code on future TEE
platforms.

For instance, in recent years, the confidential VM abstraction has
grown in popularity, and is a better fit than the enclave model for
some use cases. Intel’s new TDX feature follows the confidential
VM model.

A recent CCS paper [55] describes how Gramine has been ported
to run applications on Intel TDX. The core Gramine library OS was
not modified for TDX, only a TDX-specific PAL need be imple-
mented, totaling about 17 kLoC. This PAL looked very different
than the SGX PAL, implementing I/O abstractions over simple virtio
drivers on TDX, whereas the SGX PAL implements these abstrac-
tions on host OS file handles. Gramine on TDX retains compatibility
with many Linux applications, but an order-of-magnitude smaller
TCB and an order of magnitude fewer inputs to check than running
Linux inside of a confidential VM on TDX.

Gramine on TDX is currently an experimental feature, which
we intend to continue maturing. We also note that IBM has also

contributed patches to port Gramine to the IBM Power architecture.
These porting efforts show both the generality of Gramine, and
engineering investments in the core Gramine library OS may accel-
erate research and development future TEEs and other hardware
platforms.

3 SIMILAR PROJECTS
Gramine shares much of its design and modular architecture with
Drawbridge [80], a similar library OS created by refactoring the
Windows kernel. The Haven library OS was the first project to
demonstrate the power of a library OS for portability in a TEE [11],
built upon Drawbridge. Drawbridge is now in production in Mi-
crosoft Azure cloud [30]. Havenwas the inspiration to port Gramine
to SGX, effectively creating an open-source alternative to closed-
source Haven for researchers and developers.

SinceHaven andGramine, several other projects have created lift-
and-shift frameworks. Key differentiating features include whether
the project is open-source, the implementation language, andwhether
the application binaries must be recompiled. Within Linux/Unix
compatibility layers, another key difference is whether fork() is
supported, as well as whether processes run in one or multiple
address spaces.

Gramine is implemented in C (Gramine predates the Rust lan-
guage) and does not require recompilation. Gramine supports fork()
and runs processes in separate address spaces, except when run on
Intel’s TDX, which is still in development. Gramine implements
about 170 out of roughly 360 Linux system calls. Gramine also sup-
ports portions of the /dev, /proc, and /sys pseudo-file systems.

Occlum [91] (open-source) is a lightweight library OS that runs
legacy code inside an enclave, but requires recompilation. Unlike
Gramine, which implements multiple processes using multiple ad-
dress spaces, Occlum uses Intel’s Memory Protection eXtension
(MPX) [35] hardware or Software Fault Isolation (SFI) to isolate
regions within a single, shared address space. Occlum’s library OS
is the first libOS in Rust, and has implemented 200 out of 325 Linux
system calls.

Scone [7] (closed-source) is another library OS that runs legacy
Linux application binaries inside enclaves. Unlike Gramine, which
virtualizes at the system call table, Scone virtualizes and shields at
the C library interface, and requires cross-compilation. Scone also
now advertises support for forking new processes.

Mystikos [73] (open-source) is a porting framework for confi-
dential computing that packs each application with its libraries, a
file-system image, and a library OS, into a single, encrypted im-
age. The Mystikos kernel has implemented 95 Linux system calls,
including experimental support for forking.

SGX-LKL [81] (open-source) is a port of the Linux Kernel Library
(LKL) [82] as an open-source library OS to run inside enclaves. SGX-
LKL reuses portions of the existing Linux source code (sometimes
called a Rump kernel [46]), facilitating bug-for-bug compatibility.
SGX-LKL does not support fork, multi-processing, or inter-process
communication, since LKL is designed to be loaded into a single
address space. For IO, SGX-LKL operates on raw disks and network
devices; running the complete IO stacks in the enclave. SGX-LKL
includes an oblivious external I/O feature to hide sensitive I/O pat-
terns.



Michał Kowalczyk, Dmitrii Kuvaiskii, Paweł Marczewski, Borys Popławski, Wojtek Porczyk, Donald E. Porter, Kailun Qin, Chia-Che Tsai, Mona Vij, and Isaku Yamahata

Development Frameworks. Outside of the “lift-and-shift” model,
a number of frameworks and software development kits (SDKs)
include tools for writing new application software for TEEs. Intel
provides an Intel’s SDK and Platform Software (PSW) [44] for writ-
ing SGX in C/C++ applications. Open Enclave SDK [75] is another
SDK which aims to be universal for multiple platforms, currently
supporting Intel SGX, with preview support for OP-TEE OS and
ARM TrustZone.

Apache Teaclave [10] and Fortanix’s EPD [31] are frameworks for
writing TEE code in Rust. More recent development frameworks tar-
get portability across multiple TEE platforms, including Microsoft
Confidential Consortium Framework [69], Google Asylo [8], and
Enarx [28].

SGX-RA-TLS [89] is a communication framework that simplifies
SGX application development by integrating SGX remote attesta-
tion into the Transport Layer Security (TLS) protocol. The SGX
remote attestation requires remote entities to verify the certificates
signed by the target enclaves, with an Intel-owned or cloud-owed
attestation service. SGX-RA-TLS further embeds the secrets nego-
tiated during TLS handshake into the certificates attestation, to
prevent person-in-the-middle attacks, and can transparently do so
in Gramine, SGX-LKL, or Scone.

4 CONCLUSION
Gramine has matured over ten years from a research prototype to
a production-quality framework for deploying unmodified applica-
tion binaries on SGX. Gramine has helped over a hundred research
projects build SGX prototypes more quickly, and is in production
use by multiple start-ups and cloud service providers. We expect
Gramine to continue to add missing system calls and other OS
features over time, we hope to completely match Linux’s features
for unprivileged user applications in future work. Early experience
with TDX indicates that Gramine is likely to be useful on additional
TEEs.

ACKNOWLEDGMENTS
Many people have contributed code to Gramine since its incep-
tion in 2011 — too many to list in this document — including Ne-
hal Bandi, Bill Jannen, Vrushali Kulkarni, Bhushan Jain, Gurpreet
Chadha, Jitin John, Kumar Saurabh Arora, Manikantan Subrama-
nian, Naveen Kalaskar, Thomas Mathew, Anchal Agarwal, Amit
Arya, Sourabh Yerfule, Ujwala Tulshigiri, Imran Brown, Rajendra
Kumar, Jia Zhang, Li Xun, Rafał Wojdyła, Stefan Berger, Vijay Dhan-
raj, Anjo Vahldiek-Oberwagner, Mariusz Zaborski, Maja Kądziołka,
Anees Sahib, Sankaranarayanan Venkatasubramanian, and Jiten-
der Kumar. Gramine was designed and implemented in part while
Porter and Tsai were at Stony Brook University and while Tsai was
at UC Berkeley.We give especial thanks to David Cowhig for system
administration support. Gramine development has been funded by
NSF awards CNS-1149229, CNS-1228839, CNS-1700512, and CNS-
2244937. We are grateful for infrastructure and hardware support
from the Linux Foundation’s Confidential Computing Consortium
and Intel. Porter has a significant financial interest in Fortanix and
Anjuna Security.

REFERENCES
[1] 2024. Linux Foundation Confidential Computing Consortium: Project Progres-

sion Policy. https://github.com/confidential-computing/governance/blob/main/
project-progression-policy.md#graduation-stage.

[2] Alejandro Cabrera Aldaya and Billy Bob Brumley. 2020. Online template attacks:
Revisited. arXiv preprint arXiv:2007.05337 (2020).

[3] Alejandro Cabrera Aldaya, Cesar Pereida García, and Billy Bob Brumley. 2020.
From A to Z: Projective coordinates leakage in the wild. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2020), 428–453.

[4] Fritz Alder, Jo Van Bulck, David Oswald, and Frank Piessens. 2020. Faulty
point unit: Abi poisoning attacks on intel sgx. In Annual Computer Security
Applications Conference. 415–427.

[5] Robin Ankele. 2020. Addressing syntactic privacy for privacy-preserving data
analysis and data release. Ph. D. Dissertation. University of Oxford.

[6] Sam Ansmink. 2021. Encrypted Query Processing in DuckDB. Ph. D. Dissertation.
Universiteit van Amsterdam.

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
OSDI.

[8] Asylo 2018. Asylo. https://asylo.dev/.
[9] BigDL Authors. 2020. Privacy Preserving Machine Learning (PPML) on

Azure User Guide. https://bigdl.readthedocs.io/en/latest/doc/PPML/Overview/
azure_ppml.html#privacy-preserving-machine-learning-ppml-on-azure-
user-guide.

[10] Baidu. 2019. Rust SGX SDK. https://github.com/apache/incubator-teaclave-
sgx-sdk.

[11] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applica-
tions from an Untrusted Cloud with Haven. In OSDI. 267–283.

[12] Sebastian P Bayerl, Ferdinand Brasser, Christoph Busch, Tommaso Frassetto,
Patrick Jauernig, Jascha Kolberg, Andreas Nautsch, Korbinian Riedhammer,
Ahmad-Reza Sadeghi, Thomas Schneider, et al. 2019. Privacy-preserving speech
processing via STPC and TEEs. (2019).

[13] André Brandão, João S Resende, and Rolando Martins. 2021. Hardening crypto-
graphic operations through the use of secure enclaves. Computers & Security
108 (2021), 102327.

[14] Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, Thomas Schneider, and Christian Weinert. 2018. VoiceGuard: Secure
and Private Speech Processing.. In Interspeech. 1303–1307.

[15] Cláudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and João Paulo.
2021. Soteria: Privacy-Preserving Machine Learning for Apache Spark. Cryp-
tology ePrint Archive (2021).

[16] Johannes Buchmann, Ghada Dessouky, Tommaso Frassetto, Ágnes Kiss, Ahmad-
Reza Sadeghi, Thomas Schneider, Giulia Traverso, and Shaza Zeitouni. 2020.
SAFE: A Secure and Efficient Long-Term Distributed Storage System. In Pro-
ceedings of the 8th International Workshop on Security in Blockchain and Cloud
Computing. 8–13.

[17] Guoxing Chen. 2019. Exploitable Hardware Features and Vulnerabilities Enhanced
Side-Channel Attacks on Intel SGX and Their Countermeasures. The Ohio State
University.

[18] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. 2019. SgxPectre:
Stealing Intel Secrets from SGX Enclaves Via Speculative Execution. In 2019
IEEE European Symposium on Security and Privacy (EuroS P). 142–157.

[19] Lixia Chen, Jian Li, Ruhui Ma, Haibing Guan, and Hans-Arno Jacobsen. 2019.
EnclaveCache: A Secure and Scalable Key-Value Cache in Multi-Tenant Clouds
Using Intel SGX. In Proceedings of the 20th International Middleware Conference
(Davis, CA, USA) (Middleware ’19). Association for Computing Machinery, New
York, NY, USA, 14–27. https://doi.org/10.1145/3361525.3361533

[20] Mruthunjaya Chetty and Jie Ren. 2022. Secured AI Model Inferencing
at the Edge with Intel Developer Cloud for Edge Workloads. https:
//www.intel.com/content/www/us/en/developer/articles/technical/secured-
ai-model-inferencing-at-the-edge.html.

[21] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya
Alexandrovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein.
2023. AEX-Notify: Thwarting Precise Single-Stepping Attacks through Interrupt
Awareness for Intel SGX Enclaves. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 4051–4068. https://www.
usenix.org/conference/usenixsecurity23/presentation/constable

[22] Jinhua Cui, Shweta Shinde, Satyaki Sen, Prateek Saxena, and Pinghai Yuan. 2021.
Dynamic Binary Translation for SGX Enclaves. arXiv preprint arXiv:2103.15289
(2021).

[23] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena, and Zhiping
Cai. 2021. SmashEx: Smashing SGX Enclaves Using Exceptions. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
779–793.

https://github.com/confidential-computing/governance/blob/main/project-progression-policy.md#graduation-stage
https://github.com/confidential-computing/governance/blob/main/project-progression-policy.md#graduation-stage
https://asylo.dev/
https://bigdl.readthedocs.io/en/latest/doc/PPML/Overview/azure_ppml.html#privacy-preserving-machine-learning-ppml-on-azure-user-guide
https://bigdl.readthedocs.io/en/latest/doc/PPML/Overview/azure_ppml.html#privacy-preserving-machine-learning-ppml-on-azure-user-guide
https://bigdl.readthedocs.io/en/latest/doc/PPML/Overview/azure_ppml.html#privacy-preserving-machine-learning-ppml-on-azure-user-guide
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/apache/incubator-teaclave-sgx-sdk
https://doi.org/10.1145/3361525.3361533
https://www.intel.com/content/www/us/en/developer/articles/technical/secured-ai-model-inferencing-at-the-edge.html
https://www.intel.com/content/www/us/en/developer/articles/technical/secured-ai-model-inferencing-at-the-edge.html
https://www.intel.com/content/www/us/en/developer/articles/technical/secured-ai-model-inferencing-at-the-edge.html
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable


Rapid Deployment of Confidential Cloud Applications with Gramine

[24] Rongzhen Cui, Lianying Zhao, and David Lie. 2021. Emilia: Catching Iago in
Legacy Code. In Proceedings of the 2021 Symposium on Network and Distributed
System Security (NDSS). https://security.csl.toronto.edu/wp-content/uploads/
2021/01/rcui-ndss2021-emilia.pdf

[25] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,
Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. Fastkitten:
Practical smart contracts on bitcoin. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 801–818.

[26] Omar Dib, Clément Huyart, and Khalifa Toumi. 2020. A novel data exploitation
framework based on blockchain. Pervasive and Mobile Computing 61 (2020),
101104. https://doi.org/10.1016/j.pmcj.2019.101104

[27] Brandon D’Agostino and Omer Khan. 2021. Seeds of SEED: Characterizing
Enclave-level Parallelism in Secure Multicore Processors. In 2021 International
Symposium on Secure and Private Execution Environment Design (SEED). IEEE,
203–209.

[28] Enarx 2022. Enarx. https://enarx.dev/.
[29] Fedlearner 2024. Vertical Federated Learning. https://github.com/bytedance/

fedlearner/tree/fix_dev_sgx/sgx.
[30] Mary Jo Foley. 2013. Microsoft to offer its ’Drawbridge’ virtualization technology

on top of its Windows Azure cloud. http://www.zdnet.com/article/microsoft-
to-offer-its-drawbridge-virtualization-technology-on-top-of-its-windows-
azure-cloud/.

[31] Fortanix. 2019. Fortanix Rust Enclave Development Platform. https://github.
com/fortanix/rust-sgx.

[32] Anders Tungeland Gjerdrum, Håvard Dagenborg Johansen, Lars Brenna, and
Dag Johansen. 2019. Diggi: A secure framework for hosting native cloud
functions with minimal trust. In 2019 First IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA).
IEEE, 18–27.

[33] Christian Göttel, Rafael Pires, Isabelly Rocha, Sébastien Vaucher, Pascal Felber,
Marcelo Pasin, and Valerio Schiavoni. 2018. Security, performance and energy
implications of hardware-assisted memory protection mechanisms on event-
based streaming systems. In 2018 IEEE 37th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 264–266.

[34] Christian Göttel, Rafael Pires, Isabelly Rocha, Sébastien Vaucher, Pascal Felber,
Marcelo Pasin, and Valerio Schiavoni. 2018. Security, performance and energy
trade-offs of hardware-assisted memory protection mechanisms. In 2018 IEEE
37th Symposium on Reliable Distributed Systems (SRDS). IEEE, 133–142.

[35] Dave Hansen. 2016. Intel® Memory protection Extensions (Intel® MPX) for
Linux. https://01.org/blogs/2016/intel-mpx-linux. (2016).

[36] Taylor Hardin and David Kotz. 2021. Amanuensis: Information provenance for
health-data systems. Information Processing & Management 58, 2 (2021), 102460.
https://doi.org/10.1016/j.ipm.2020.102460

[37] Aisha Hasan, Ryan Riley, and Dmitry Ponomarev. 2020. Port or Shim? Stress
Testing Application Performance on Intel SGX. In 2020 IEEE International Sym-
posium on Workload Characterization (IISWC). IEEE, 123–133.

[38] Sohaib Ul Hassan, Iaroslav Gridin, Ignacio M Delgado-Lozano, Cesar Pereida
García, Jesús-Javier Chi-Domínguez, Alejandro Cabrera Aldaya, and Billy Bob
Brumley. 2020. Déjà Vu: Side-Channel Analysis of Mozilla’s NSS. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
1887–1902.

[39] W. He, W. Zhang, S. Das, and Y. Liu. 2018. SGXlinger: A New Side-Channel
Attack Vector Based on Interrupt Latency Against Enclave Execution. In 2018
IEEE 36th International Conference on Computer Design (ICCD). 108–114. https:
//doi.org/10.1109/ICCD.2018.00025

[40] Emil Hemdal and Eliot Roxbergh. 2020. Erlang SGX-Protecting Confidential
Erlang Workloads with Intel SGX. (2020).

[41] Stephen Herwig, Christina Garman, and Dave Levin. 2020. Achieving Keyless
CDNs with Conclaves. In 29th USENIX Security Symposium (USENIX Security
20). 735–751.

[42] Helge Hoff. 2018. SecureCached. Secure caching with the Diggi framework.
Master’s thesis. UiT Norges arktiske universitet.

[43] Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo Vahldiek-
Oberwagner, and Nathan Dautenhahn. 2021. The Endokernel: Fast, Secure,
and Programmable Subprocess Virtualization. arXiv preprint arXiv:2108.03705
(2021).

[44] Intel Corporation. 2016. Intel® Software Guard Extensions for Linux OS - Intel
SGX SDK. https://github.com/01org/linux-sgx.

[45] Ibrahim Tariq Javed, Fares Alharbi, Tiziana Margaria, Noel Crespi, and
Kashif Naseer Qureshi. 2021. PETchain: A Blockchain-Based Privacy Enhancing
Technology. IEEE Access 9 (2021), 41129–41143.

[46] Antti Kantee. 2012. Flexible Operating System Internals: The Design and Imple-
mentation of the Anykernel and Rump Kernels. Doctoral thesis. School of Science.
http://urn.fi/URN:ISBN:978-952-60-4917-5

[47] Vishal Karande. 2018. Protecting User Applications Using Trusted Execution
Environment. The University of Texas at Dallas.

[48] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk
Huh. 2019. Shieldstore: Shielded in-memory key-value storage with SGX. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1–15.

[49] Robin Klusman, Derk Barten, and Gijs Hollestelle. 2019. Practical Implications
of Graphene-SGX. (2019).

[50] Robert Krahn, Donald Dragoti, Franz Gregor, Do Le Quoc, Valerio Schiavoni,
Pascal Felber, Clenimar Souza, Andrey Brito, and Christof Fetzer. 2020. TEEMon:
A Continuous Performance Monitoring Framework for TEEs. In Proceedings of
the 21st International Middleware Conference (Delft, Netherlands) (Middleware
’20). Association for ComputingMachinery, New York, NY, USA, 178–192. https:
//doi.org/10.1145/3423211.3425677

[51] Kubilay Ahmet Küçük, David Grawrock, and Andrew Martin. 2019. Managing
confidentiality leaks through private algorithms on Software Guard eXtensions
(SGX) enclaves. EURASIP Journal on Information Security 2019, 1 (2019), 1–22.

[52] Sandeep Kumar and Smruti R Sarangi. 2021. SecureFS: A Secure File System for
Intel SGX. In 24th International Symposium on Research in Attacks, Intrusions
and Defenses. 91–102.

[53] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij. 2018. Snort Intrusion
Detection System with Intel Software Guard Extension (Intel SGX). arXiv
preprint arXiv:1802.00508 (2018).

[54] Dmitrii Kuvaiskii, Gaurav Kumar, and Mona Vij. 2022. Computation of-
floading to hardware accelerators in Intel SGX and Gramine Library OS.
arXiv:2203.01813 [cs.CR] https://arxiv.org/abs/2203.01813

[55] Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric Xing, Pramod
Bhatotia, and Mona Vij. 2024. Gramine-TDX: A Lightweight OS Kernel for
Confidential VMs. In CCS.

[56] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada Popa.
2020. An Off-Chip Attack on Hardware Enclaves via the Memory Bus. In 29th
USENIX Security Symposium (USENIX Security 20).

[57] Dayeol Lee, Dmitrii Kuvaiskii, Anjo Vahldiek-Oberwagner, and Mona Vij. 2020.
Privacy-Preserving Machine Learning in Untrusted Clouds Made Simple. https:
//doi.org/10.48550/ARXIV.2009.04390

[58] Jehyun Lee, Min Suk Kang, Dinil Mon Divakaran, Phyo May Thet, Videet
Singhai, and Jun Seung You. 2022. A Step Towards On-Path Security Function
Outsourcing. In 23rd International Conference on Distributed Computing and
Networking. 175–187.

[59] Carl Leijonberg. 2021. The Viability of Using Trusted Execution Environments
to Protect Data in Node-RED: A study on using AMD-SEV and Intel SGX to
protect sensitive data when Node-RED is deployed on the cloud.

[60] Joshua David Lind. 2019. Securing applications using trusted execution envi-
ronments. (2019).

[61] Bingyu Liu, Shangyu Xie, and Yuan Hong. 2021. Efficient and Private Divisible
Double Auction in Trusted Execution Environment. In EAI International Con-
ference on Applied Cryptography in Computer and Communications. Springer,
75–92.

[62] Bingyu Liu, Shangyu Xie, Yuanzhou Yang, Rujia Wang, and Yuan Hong. 2021.
Privacy preserving divisible double auction with a hybridized TEE-blockchain
system. Cybersecurity 4, 1 (2021), 1–14.

[63] Weijie Liu, Hongbo Chen, XiaoFeng Wang, Zhi Li, Danfeng Zhang, Wenhao
Wang, and Haixu Tang. 2021. Understanding TEE Containers, Easy to Use?
Hard to Trust. arXiv preprint arXiv:2109.01923 (2021).

[64] Ximing Liu, Wenwen Wang, Lizhi Wang, Xiaoli Gong, Ziyi Zhao, and Pen-
Chung Yew. 2020. Regaining Lost Seconds: Efficient Page Preloading for SGX
Enclaves. In Proceedings of the 21st International Middleware Conference. 326–
340.

[65] Enio Marku, Gergely Biczók, and Colin Boyd. 2021. SafeLib: a practical li-
brary for outsourcing stateful network functions securely. In 2021 IEEE 7th
International Conference on Network Softwarization (NetSoft). IEEE, 244–252.

[66] Miti Mazmudar and Ian Goldberg. 2020. Mitigator: Privacy policy compliance
using trusted hardware. Proceedings on Privacy Enhancing Technologies 2020, 3
(2020), 204–221.

[67] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative In-
structions and Software Model for Isolated Execution. In HASP. ACM. http:
//doi.acm.org/10.1145/2487726.2488368

[68] Marcela S Melara, Michael J Freedman, and Mic Bowman. 2019. EnclaveDom:
Privilege separation for large-TCB applications in trusted execution environ-
ments. arXiv preprint arXiv:1907.13245 (2019).

[69] Microsoft. 2019. Microsoft Confidential Consortium Framework (CCF).
https://www.microsoft.com/en-us/research/project/confidential-consortium-
framework/.

[70] Microsoft. 2023. Confidential containers on Azure Kubernetes Service(AKS)
with Intel SGX enclaves. https://learn.microsoft.com/en-us/azure/confidential-
computing/confidential-containers-enclaves.

[71] Marina Minkin and Mark Silberstein. 2019. Improving Performance and Security
of Intel SGX. Ph. D. Dissertation. Computer Science Department, Technion.

[72] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against

https://security.csl.toronto.edu/wp-content/uploads/2021/01/rcui-ndss2021-emilia.pdf
https://security.csl.toronto.edu/wp-content/uploads/2021/01/rcui-ndss2021-emilia.pdf
https://doi.org/10.1016/j.pmcj.2019.101104
https://enarx.dev/
https://github.com/bytedance/fedlearner/tree/fix_dev_sgx/sgx
https://github.com/bytedance/fedlearner/tree/fix_dev_sgx/sgx
http://www.zdnet.com/article/microsoft-to-offer-its-drawbridge-virtualization-technology-on-top-of-its-windows-azure-cloud/
http://www.zdnet.com/article/microsoft-to-offer-its-drawbridge-virtualization-technology-on-top-of-its-windows-azure-cloud/
http://www.zdnet.com/article/microsoft-to-offer-its-drawbridge-virtualization-technology-on-top-of-its-windows-azure-cloud/
https://github.com/fortanix/rust-sgx
https://github.com/fortanix/rust-sgx
https://01.org/blogs/2016/intel-mpx-linux
https://doi.org/10.1016/j.ipm.2020.102460
https://doi.org/10.1109/ICCD.2018.00025
https://doi.org/10.1109/ICCD.2018.00025
https://github.com/01org/linux-sgx
http://urn.fi/URN:ISBN:978-952-60-4917-5
https://doi.org/10.1145/3423211.3425677
https://doi.org/10.1145/3423211.3425677
https://arxiv.org/abs/2203.01813
https://arxiv.org/abs/2203.01813
https://doi.org/10.48550/ARXIV.2009.04390
https://doi.org/10.48550/ARXIV.2009.04390
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
https://www.microsoft.com/en-us/research/project/confidential-consortium-framework/
https://www.microsoft.com/en-us/research/project/confidential-consortium-framework/
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-containers-enclaves
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-containers-enclaves


Michał Kowalczyk, Dmitrii Kuvaiskii, Paweł Marczewski, Borys Popławski, Wojtek Porczyk, Donald E. Porter, Kailun Qin, Chia-Che Tsai, Mona Vij, and Isaku Yamahata

Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP).
[73] Mystikos 2022. Mystikos. https://github.com/deislabs/mystikos.
[74] Phillip Nguyen, Alex Silence, David Darais, and Joseph P Near. 2020. Duetsgx:

Differential privacy with secure hardware. arXiv preprint arXiv:2010.10664
(2020).

[75] Open Enclave 2018. Open Enclave SDK. https://github.com/openenclave/
openenclave.

[76] OpenSSF. 2024. OpenSSF Best Practices - The Gramine Project. https://github.
com/bytedance/fedlearner/tree/fix_dev_sgx/sgx.

[77] Meni Orenbach, Andrew Baumann, and Mark Silberstein. 2020. Autarky: Clos-
ing Controlled Channels with Self-Paging Enclaves. In Proceedings of the Fif-
teenth European Conference on Computer Systems (Heraklion, Greece) (EuroSys
’20). Association for Computing Machinery, New York, NY, USA, Article 7,
16 pages. https://doi.org/10.1145/3342195.3387541

[78] Túlio Pascoal, Jérémie Decouchant, Antoine Boutet, and Paulo Esteves-
Verissimo. 2021. Dyps: Dynamic, private and secure gwas. Proceedings on
Privacy Enhancing Technologies (2021).

[79] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. 2020. Visor: Privacy-preserving video analytics as a cloud
service. In 29th USENIX Security Symposium (USENIX Security 20). 1039–1056.

[80] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen
Hunt. 2011. Rethinking the Library OS from the TopDown. InASPLOS. 291–304.

[81] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie
Cui, Vasily A Sartakov, and Peter Pietzuch. 2019. SGX-LKL: Securing the host
OS interface for trusted execution. arXiv preprint arXiv:1908.11143 (2019).

[82] O. Purdila, L. A. Grijincu, and N. Tapus. 2010. LKL: The Linux kernel library. In
9th RoEduNet IEEE International Conference.

[83] Wenjie Qiu. 2020. A Performance Analysis of Hardware-assisted Security
Technologies. (2020).

[84] Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkel, Pramod Bhatotia,
and Christof Fetzer. 2020. SecureTF: A Secure TensorFlow Framework. In
Proceedings of the 21st International Middleware Conference (Delft, Netherlands)
(Middleware ’20). Association for Computing Machinery, New York, NY, USA,
44–59. https://doi.org/10.1145/3423211.3425687

[85] G Anthony Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Mansi
Sharma, Igor Davidyuk, Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov,
Dmitry Agapov, et al. 2021. OpenFL: An open-source framework for Federated
Learning. arXiv preprint arXiv:2105.06413 (2021).

[86] Michael Reininger, Arushi Arora, Stephen Herwig, Nicholas Francino, Jayson
Hurst, Christina Garman, and Dave Levin. 2021. Bento: Safely bringing network
function virtualization to Tor. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference. 821–835.

[87] Fabian Schwarz and Christian Rossow. 2020. {SENG}, the {SGX-Enforcing}
Network Gateway: Authorizing Communication from Shielded Clients. In 29th
USENIX Security Symposium (USENIX Security 20). 753–770.

[88] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical enclave
malware with Intel SGX. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 177–196.

[89] SGX-RA-TLS 2022. SGX RA TLS. https://github.com/cloud-security-research/
sgx-ra-tls.

[90] Kripa Shanker, Arun Joseph, and Vinod Ganapathy. 2020. An Evaluation of
Methods to Port Legacy Code to SGX Enclaves. Association for Computing
Machinery, New York, NY, USA, 1077–1088. https://doi.org/10.1145/3368089.
3409726

[91] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking Inside
a Single Enclave of Intel SGX. Association for Computing Machinery, New York,
NY, USA, 955–970. https://doi.org/10.1145/3373376.3378469

[92] Edgeless Systems. 2024. Case Study: Major European Bank. https://www.
edgeless.systems/resource-library/major-european-bank.

[93] Jonathan Takeshita, Colin McKechney, Justin Pajak, Antonis Papadimitriou,
Ryan Karl, and Taeho Jung. 2021. GPS: Integration of Graphene, PALISADE,
and SGX for Large-scale Aggregations of Distributed Data. Cryptology ePrint
Archive (2021).

[94] Hajime Tazaki, Akira Moroo, Yohei Kuga, and Ryo Nakamura. 2021. How to
design a library OS for practical containers?. In Proceedings of the 17th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
15–28.

[95] Flavio Toffalini, Andrea Oliveri, Mariano Graziano, Jianying Zhou, and Davide
Balzarotti. 2021. The evidence beyond the wall: Memory forensics in SGX
environments. Forensic Science International: Digital Investigation 39 (2021),
301313.

[96] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and
Donald E. Porter. 2014. Cooperation and Security Isolation of Library OSes for
Multi-Process Applications. In EuroSys.

[97] David Übler, Johannes Götzfried, and Tilo Müller. 2018. Secure remote compu-
tation using intel sgx. SICHERHEIT 2018 (2018).

[98] Jo Van Bulck, Fritz Alder, and Frank Piessens. 2022. A Case for Unified ABI
Shielding in Intel SGX Runtimes. (2022).

[99] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia,
and Frank Piessens. 2019. A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1741–1758.

[100] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling your secrets without page faults: Stealthy page table-
based attacks on enclaved execution. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 1041–1056.

[101] Kobe Vrancken, Frank Piessens, and Raoul Strackx. 2019. Securely deploying
distributed computation systems on peer-to-peer networks. In Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing. 328–337.

[102] Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo. 2019. Asphalion:
trustworthy shielding against byzantine faults. Proceedings of the ACM on
Programming Languages 3, OOPSLA (2019), 1–32.

[103] Wubing Wang, Yinqian Zhang, and Zhiqiang Lin. 2019. Time and Order: To-
wards Automatically Identifying {Side-Channel} Vulnerabilities in Enclave
Binaries. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019). 443–457.

[104] Chathura Widanage, Weijie Liu, Jiayu Li, Hongbo Chen, XiaoFeng Wang, Haixu
Tang, and Judy Fox. 2021. HySec-Flow: Privacy-Preserving Genomic Computing
with SGX-based Big-Data Analytics Framework. In 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). IEEE, 733–743.

[105] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza
Sadeghi, and Nele Mentens. 2021. Trusted configuration in cloud FPGAs. In
2021 IEEE 29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 233–241.

[106] Denghui Zhang and Zhaoquan Gu. 2021. A high-quality authenticatable vi-
sual secret sharing scheme using SGX. Wireless Communications and Mobile
Computing 2021 (2021).

[107] D. Zhang, G. Wang, W. Xu, and K. Gao. 2019. SGXPy: Protecting Integrity of
Python Applications with Intel SGX. In 2019 26th Asia-Pacific Software Engi-
neering Conference (APSEC). 418–425.

[108] Hong Zhong, Wenwen Cao, Qingyang Zhang, Jing Zhang, and Jie Cui. 2021.
Toward Trusted and Secure Communication Among Multiple Internal Modules
in CAV. IEEE Internet of Things Journal 8, 24 (2021), 17734–17746.

https://github.com/deislabs/mystikos
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://github.com/bytedance/fedlearner/tree/fix_dev_sgx/sgx
https://github.com/bytedance/fedlearner/tree/fix_dev_sgx/sgx
https://doi.org/10.1145/3342195.3387541
https://doi.org/10.1145/3423211.3425687
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/cloud-security-research/sgx-ra-tls
https://doi.org/10.1145/3368089.3409726
https://doi.org/10.1145/3368089.3409726
https://doi.org/10.1145/3373376.3378469
https://www.edgeless.systems/resource-library/major-european-bank
https://www.edgeless.systems/resource-library/major-european-bank

	Abstract
	1 Introduction
	1.1 Container Integration

	2 Gramine's Impact
	2.1 Evolving with SGX
	2.2 TEEs Beyond SGX

	3 Similar Projects
	4 Conclusion
	References

