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ABSTRACT
Gramine is a leading open-source tool for securely porting unmodi-
fied Linux applications onto Intel® SGX [67]. Gramine implements
the “lift-and-shift” model of confidential computing—where one
simply runs an entire, legacy application in a trusted execution en-
vironment (TEE), such as Intel SGX. Gramine was initially released
as an artifact of the 2014 EuroSys Paper [96], and over the subse-
quent ten years has evolved into a production-ready, open-source
community project, deployed commercially by multiple companies.
Gramine has been used by over one hundred peer-reviewed pa-
pers to facilitate confidential computing research: in some cases,
it is the benchmark against which other systems or TEE design
choices are measured; as a baseline for security analysis or attacks
and, in others, a building block for quick prototyping of applica-
tions in domains including health care, machine learning, genome
analysis, speech processing, networking, autonomous vehicles, IoT
management, and database systems. This short paper describes the
Gramine project and its impact on industry and research.

1 INTRODUCTION
Gramine is an open-source tools for securely deploying unmodified
Linux applications on Intel® SGX [67] and other trusted execu-
tion environments (TEEs). Gramine implements the “lift-and-shift”
model of confidential computing—where one simply runs an entire,
legacy application in the TEE. Figure 1 overviews the Gramine ar-
chitecture [96] and how it is deployed in SGX, specifically. Gramine
reimplements the Linux system call table in a user space library
(hence the name library OS). The heavy black box indicates the
boundary of the trusted code running inside the TEE (enclave). At
the top is an unmodified application binary, followed by supporting
libraries. Some system calls are implemented entirely within the

Library OS, and some request (and dynamically check) function-
ality from the untrusted host kernel. A rare feature of Gramine is
multi-process support, including fork(). Multiple processes are im-
plemented using multiple separate host address spaces and passing
encrypted, signed messages between enclaves. Although message
passing in user-space is slower than an in-kernel implementation
of inter-process communication primitives (IPC), this design choice
avoids placing functionality and trust in the host kernel.

Gramine is designed for Platform Independence; it is imple-
mented against a small, simple ABI (fewer than 50 calls) called
the Platform Adaptation Layer (PAL). The PAL ABI includes
abstractions for memory, threads, files, and devices. In principle, if
one reimplements the PAL ABI on a new host, the rest of Gramine
and supported applications should “just work.”

Although Gramine does not require application code changes or
recompilation, each application does need a signedmanifest file
to specify what data should be loaded into the enclave. The mani-
fest includes hashes of trusted files, as well as other virtualization
parameters.

For running on an untrusted host, as in the SGX threat model,
Gramine adds a shielding layer to the TEE interface (i.e., ecalls
on SGX). Although there are minor differences between the enclave
and PAL ABI, we expect these to consolidate in the future.

Gramine is compatible with multiple remote attestation frame-
works. In the past, Gramine has supported Intel Attestation Service
(IAS), and several protocols based on Intel Data Center Attestation
Primitives (DCAP). As IAS is reaching end of life in 2025, Gramine
is retiring IAS support at the time of writing.

We welcome and encourage contributions of useful changes to
Gramine itself. Gramine is licensed under the LGPL, which does
require users publish modifications to Gramine itself. However,
our understanding in adopting the LGPL is that anyone is free to
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Figure 1: The Gramine architecture. The executable is
position-dependent. The enclave includes an OS shield, a
library OS, Glibc, and other user binaries.

use Gramine without sharing any code outside of Gramine; the
obligation to share code stops at the boundary of the library OS.
For instance, using unmodified Gramine to deploy a closed-source
application incurs no obligation to share source code, nor does it
prevent use with code under a different license.

1.1 Container Integration
In order to facilitate application deployment on Gramine, Gramine
includes two tools to automate construction of containers that use
Gramine to run on SGX.

The first feature, called Gramine Shielded Containers (gsc),
automatically converts a Docker image into a version of the image
that can run in Gramine on SGX. Containers, such as Docker, are
now a very common way to package and deploy software. A docker-
file, which describes how to build an application image; a Gramine
manifest has a similar goal of describing the runtime requirements
of an application, and is perhaps one of the most challenging steps
in adopting Gramine.

GSC automatically generates a Gramine manifest from a docker
image, and then creates a new Docker image that includes the
manifest, Gramine, and other required SGX runtime support. GSC
also has the ability to sign the manifest and run the container in
SGX.

The second tool is called Scaffolding for Gramine (SCAG),
and leverages a language runtime or other framework to generate
a Docker image with Gramine. Unlike GSC, SCAG does not require
an initial Docker Image. SCAG is currently compatible with Python,
Flask, Node.js, Express.js, Koa.js, Java JAR files, Java with the Gradle
build system, and .NET. SCAG also automatically adds SSL/TLS to
plaintext networking apps.

These two tools indicate thatmost of the information that Gramine
requires to run an application is already present in most deployment
tools.

2 GRAMINE’S IMPACT
Gramine has been a key enabling technology for confidential com-
puting research and practice to-date. Specifically, Gramine (1) is the
first open-source, lift-and-shift framework; (2) is mature enough
to run a significant number of real-world applications; (3) has a
broad user base; and (4) has a growing contributor community.
Gramine has been used by over one hundred peer-reviewed papers
to facilitate confidential computing research: in some cases, it is the
benchmark against which other systems or TEE design choices are
measured [13, 19, 22, 27, 32, 34, 37, 47, 48, 50, 60, 83, 84, 90, 91, 94];
a baseline for security analysis or attacks [3, 4, 17, 18, 23, 24, 39,
49, 56, 63, 72, 81, 88, 95, 98, 99, 103]; and, in others, a building
block for quick prototyping of applications in domains including
health care, machine learning, genome analysis, speech processing,
networking, autonomous vehicles, IoT management, and database
systems [2, 5, 6, 12, 14–16, 25, 26, 33, 36, 38, 40–43, 45, 51–53, 57–
59, 61, 62, 64–66, 68, 71, 74, 77–79, 85–87, 93, 97, 100–102, 104–108].

On the industry side, Gramine had its first production release
in late 2021 and we are aware of at least six companies developing
products built on Gramine. We keep a list of Gramine users online 1.
One example of Gramine’s utility is IBM’s ePrescription system,
which is used by the German Ministry of Health to track prescrip-
tions across the entire German population. Several cloud service
providers have built solutions for SGX involving Gramine, includ-
ing Tencent, JD Cloud, ByteDance, and Microsoft. Several start-ups
use Gramine in their solutions; for instance, Edgeless [92] uses
Gramine to secure blockchain infrastructure for banks. Gramine
is used internally at Intel for validating and benchmarking SGX
CPUs, and for internal services.

One major class of applications where Gramine has gained trac-
tion is in secure machine learning infrastructures. The OpenFL
federated learning project has been built using Gramine [85]. The
BigDL large language model framework integrates standard ma-
chine learning tools, such as Tensorflow and Pytorch, with sys-
tem security features such as SGX and Gramine [9]. Simiarly, the
OpenVINO machine learning toolkit for AI inference includes a set
of security add-ons that also include SGX support, facilitated by
Gramine [20]. ByteDance’s support for securing Federated Learning
on SGX in their Fedlearner project is also built upon Gramine [29].

Researchers and developers from Intel and Invisible Things Lab
have joined the leadership team for the project, and Gramine has
received significant code contributions from companies including
IBM and Alibaba Cloud. Gramine has been adopted by the Linux
Foundation’s Confidential Computing Consortium (CCC), which
helps the project with infrastructure, visibility, and mentorship to
build a robust developer community. Gramine is the only project to
go from the incubation to graduation stage [1]. Gramine is also the
only CCC project to date to receive the OpenSSF’s Security Best
Practices Badge [76]. Gramine is a featured open-source enabler in
Microsoft’s Azure Confidential Cloud Services [70].

1https://gramine.readthedocs.io/en/latest/gramine-users.html
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The overall maturity and utility of the project is also reflected
in various metadata statistics. On github at the time of writing,
the code has 607 stars, 201 forks, and 27 watchers. The original
Graphene repository, now archived, still has 771 stars, 260 forks, and
51 watchers. The ATC paper describing SGX support in Gramine
has 714 citations.

2.1 Evolving with SGX
SGX has evolved substantially since its first version, which made
a number of simplifying assumptions about the workloads. For
instance, the first version of SGX did not allow the program to
dynamically create new mappings inside of a host enclave. This is
a simplification not just for implementation, but reasoning about
security. For instance, the intersection of exception handling and
scheduling controlled by an untrusted host require careful reason-
ing about race conditions in how the TEE code is invoked; the
recent AEX-Notify feature in SGX supports more efficient excep-
tion handling and can be used to help enclave code defend itself
from side-channel attacks that leverage interrupts [21].

Gramine has both ongoing and completed efforts to stay abreast
of new SGX versions. In the case of dynamic memory manage-
ment, Gramine has basic support for the Enclave Dynamic Memory
Management (EDMM) feature, and work is in progress to optimize
performance of dynamic mappings in Gramine. Work is in progress
to merge AEX-Notify support. Gramine has also merged support
for using ioctl to communicate with computational accelerators
in order to offload computation [54].

2.2 TEEs Beyond SGX
Although the Gramine project has focused supporting applications
on SGX, the original design of Gramine predates SGX. Gramine was
originally designed to simplify porting code from one platform to
another. Gramine has amodular architecture that encapsulates most
host-specific (or TEE-specific) code into a platform adaptation layer
(PAL), which is designed for ease of implementation. In principle,
to support a new TEE, one only need to implement a suitable PAL
for the new TEE. Even if SGX were to fall out of usage, Gramine can
be viewed as a general-purpose Linux compatibility layer, which
can be still useful in deploying legacy Linux code on future TEE
platforms.

For instance, in recent years, the confidential VM abstraction has
grown in popularity, and is a better fit than the enclave model for
some use cases. Intel’s new TDX feature follows the confidential
VM model.

A recent CCS paper [55] describes how Gramine has been ported
to run applications on Intel TDX. The core Gramine library OS was
not modified for TDX, only a TDX-specific PAL need be imple-
mented, totaling about 17 kLoC. This PAL looked very different
than the SGX PAL, implementing I/O abstractions over simple virtio
drivers on TDX, whereas the SGX PAL implements these abstrac-
tions on host OS file handles. Gramine on TDX retains compatibility
with many Linux applications, but an order-of-magnitude smaller
TCB and an order of magnitude fewer inputs to check than running
Linux inside of a confidential VM on TDX.

Gramine on TDX is currently an experimental feature, which
we intend to continue maturing. We also note that IBM has also

contributed patches to port Gramine to the IBM Power architecture.
These porting efforts show both the generality of Gramine, and
engineering investments in the core Gramine library OS may accel-
erate research and development future TEEs and other hardware
platforms.

3 SIMILAR PROJECTS
Gramine shares much of its design and modular architecture with
Drawbridge [80], a similar library OS created by refactoring the
Windows kernel. The Haven library OS was the first project to
demonstrate the power of a library OS for portability in a TEE [11],
built upon Drawbridge. Drawbridge is now in production in Mi-
crosoft Azure cloud [30]. Havenwas the inspiration to port Gramine
to SGX, effectively creating an open-source alternative to closed-
source Haven for researchers and developers.

SinceHaven andGramine, several other projects have created lift-
and-shift frameworks. Key differentiating features include whether
the project is open-source, the implementation language, andwhether
the application binaries must be recompiled. Within Linux/Unix
compatibility layers, another key difference is whether fork() is
supported, as well as whether processes run in one or multiple
address spaces.

Gramine is implemented in C (Gramine predates the Rust lan-
guage) and does not require recompilation. Gramine supports fork()
and runs processes in separate address spaces, except when run on
Intel’s TDX, which is still in development. Gramine implements
about 170 out of roughly 360 Linux system calls. Gramine also sup-
ports portions of the /dev, /proc, and /sys pseudo-file systems.

Occlum [91] (open-source) is a lightweight library OS that runs
legacy code inside an enclave, but requires recompilation. Unlike
Gramine, which implements multiple processes using multiple ad-
dress spaces, Occlum uses Intel’s Memory Protection eXtension
(MPX) [35] hardware or Software Fault Isolation (SFI) to isolate
regions within a single, shared address space. Occlum’s library OS
is the first libOS in Rust, and has implemented 200 out of 325 Linux
system calls.

Scone [7] (closed-source) is another library OS that runs legacy
Linux application binaries inside enclaves. Unlike Gramine, which
virtualizes at the system call table, Scone virtualizes and shields at
the C library interface, and requires cross-compilation. Scone also
now advertises support for forking new processes.

Mystikos [73] (open-source) is a porting framework for confi-
dential computing that packs each application with its libraries, a
file-system image, and a library OS, into a single, encrypted im-
age. The Mystikos kernel has implemented 95 Linux system calls,
including experimental support for forking.

SGX-LKL [81] (open-source) is a port of the Linux Kernel Library
(LKL) [82] as an open-source library OS to run inside enclaves. SGX-
LKL reuses portions of the existing Linux source code (sometimes
called a Rump kernel [46]), facilitating bug-for-bug compatibility.
SGX-LKL does not support fork, multi-processing, or inter-process
communication, since LKL is designed to be loaded into a single
address space. For IO, SGX-LKL operates on raw disks and network
devices; running the complete IO stacks in the enclave. SGX-LKL
includes an oblivious external I/O feature to hide sensitive I/O pat-
terns.
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Development Frameworks. Outside of the “lift-and-shift” model,
a number of frameworks and software development kits (SDKs)
include tools for writing new application software for TEEs. Intel
provides an Intel’s SDK and Platform Software (PSW) [44] for writ-
ing SGX in C/C++ applications. Open Enclave SDK [75] is another
SDK which aims to be universal for multiple platforms, currently
supporting Intel SGX, with preview support for OP-TEE OS and
ARM TrustZone.

Apache Teaclave [10] and Fortanix’s EPD [31] are frameworks for
writing TEE code in Rust. More recent development frameworks tar-
get portability across multiple TEE platforms, including Microsoft
Confidential Consortium Framework [69], Google Asylo [8], and
Enarx [28].

SGX-RA-TLS [89] is a communication framework that simplifies
SGX application development by integrating SGX remote attesta-
tion into the Transport Layer Security (TLS) protocol. The SGX
remote attestation requires remote entities to verify the certificates
signed by the target enclaves, with an Intel-owned or cloud-owed
attestation service. SGX-RA-TLS further embeds the secrets nego-
tiated during TLS handshake into the certificates attestation, to
prevent person-in-the-middle attacks, and can transparently do so
in Gramine, SGX-LKL, or Scone.

4 CONCLUSION
Gramine has matured over ten years from a research prototype to
a production-quality framework for deploying unmodified applica-
tion binaries on SGX. Gramine has helped over a hundred research
projects build SGX prototypes more quickly, and is in production
use by multiple start-ups and cloud service providers. We expect
Gramine to continue to add missing system calls and other OS
features over time, we hope to completely match Linux’s features
for unprivileged user applications in future work. Early experience
with TDX indicates that Gramine is likely to be useful on additional
TEEs.
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