
TLS-Attacker: A Dynamic Framework for Analyzing TLS
Implementations

Fabian Bäumer
Ruhr University Bochum

Bochum, Germany
fabian.baeumer@rub.de

Marcus Brinkmann
Ruhr University Bochum

Bochum, Germany
marcus.brinkmann@rub.de

Nurullah Erinola
Ruhr University Bochum

Bochum, Germany
nurullah.erinola@rub.de

Sven Hebrok
Paderborn University
Paderborn, Germany

sven.hebrok@uni-paderborn.de

Nico Heitmann
Paderborn University
Paderborn, Germany

nico.heitmann@uni-paderborn.de

Felix Lange
Paderborn University
Paderborn, Germany

felix.lange@uni-paderborn.de

Marcel Maehren
Ruhr University Bochum

Bochum, Germany
marcel.maehren@rub.de

Robert Merget
Technology Innovation Institute
Abu Dhabi, United Arab Emirates

robert.merget@tii.ae

Niklas Niere
Paderborn University
Paderborn, Germany

niklas.niere@uni-paderborn.de

Maximilian Radoy
Paderborn University
Paderborn, Germany

maximilian.radoy@uni-paderborn.de

Conrad Schmidt
Hackmanit GmbH
Bochum, Germany

conrad.schmidt@hackmanit.de

Jörg Schwenk
Ruhr University Bochum

Bochum, Germany
joerg.schwenk@rub.de

Juraj Somorovsky
Paderborn University
Paderborn, Germany

juraj.somorovsky@uni-paderborn.de

Abstract
TLS-Attacker is an open-source framework for analyzing Transport
Layer Security (TLS) implementations. The framework allows users
to specify custom protocol flows and provides modification hooks to
manipulate message contents. Since its initial publication in 2016 by
Juraj Somorovsky, TLS-Attacker has been used in numerous studies
published at well-established conferences and helped to identify
vulnerabilities in well-known open-source TLS libraries. To enable
automated analyses, TLS-Attacker has grown into a suite of projects,
each designed as a building block that can be applied to facilitate
various analysis methodologies. The framework still undergoes
continuous improvements with feature extensions, such as DTLS
1.3 or the addition of new dialects such as QUIC, to continue its
effectiveness and relevancy as a security analysis framework.

Keywords
SSL, TLS, DTLS, Protocol State Fuzzing, Planning Based
ACM Reference Format:
Fabian Bäumer, Marcus Brinkmann, Nurullah Erinola, Sven Hebrok, Nico
Heitmann, Felix Lange, Marcel Maehren, Robert Merget, Niklas Niere, Max-
imilian Radoy, Conrad Schmidt, Jörg Schwenk, and Juraj Somorovsky. 2024.
TLS-Attacker: A Dynamic Framework for Analyzing TLS Implementations.
In Proceedings of Cybersecurity Artifacts Competition and Impact Award
(ACSAC ’24). ACM, New York, NY, USA, 6 pages.

ACSAC ’24, December 09–13, 2024, Waikiki, Hawaii
2024.

1 Introduction
Transport Layer Security (TLS) is arguably the most important
cryptographic protocol. It provides authenticity, integrity, and con-
fidentiality to any application-level protocol and thus can be used to
secure communication to web, email, or FTP servers. The protocol
has a long history, with the first developments starting in the 90s.
Back then, it was initially developed as the Secure Sockets Layer
(SSL) protocol. The protocol was adopted by the IETF and, in 1999,
released as the TLS 1.0 standard [2]. Since then, TLS 1.1 [12], 1.2 [32],
and 1.3 [31] were released. Along these standards, various proto-
col extensions were defined, which introduced new cryptographic
primitives, features, or even completely new messages.

The high importance of TLS also attracted the security research
community. Most notably, many new attacks were released at the
beginning of the 2010s. In the TLS community, this era is also ref-
erenced as the golden age of TLS attacks. The attacks exploited
the complexity of TLS and various TLS extension specifications
and affected the protocol in different attacker models. For example,
Rizzo and Duong showed how to exploit TLS compression for their
CRIME attacks [33]. Alfardan and Paterson presented Lucky13,
exploiting tiny timing side channels resulting from the padding
used in the MAC-then-pad-then-encrypt scheme [1]. Beurdouche
et al., and de Ruiter and Poll showed how TLS state machine imple-
mentations can be forced to process invalid messages, leading to
state machine violations [6, 11]. Probably the most visible attack
was, however, Heartbleed [25]. Heartbleed showed how a buffer

https://orcid.org/0009-0006-5569-6625


ACSAC ’24, December 09–13, 2024, Waikiki, Hawaii Bäumer et al.

overread vulnerability in a single implementation can lead to severe
consequences throughout the entire TLS ecosystem, such as exfil-
trating server private keys. These attacks triggered the research
community to improve TLS implementations and search for TLS
vulnerabilities in a systematic way.

The development in the area of TLS attacks also motivated our
research and culminated in the development of TLS-Attacker [38].
By developing TLS-Attacker, we considered the developments of
TLS attacks at that time and used them as the basis for defining
the requirements for a flexible TLS evaluation. Most importantly,
we observed that to implement TLS attacks and detect new ones,
the framework has to cover more than cryptographic attacks (cf.
Figure 1). First, the framework should allow for flexible protocol
message modifications potentially triggering state machine vulner-
abilities [6, 11]. This includes dynamically adding and removing
custom protocol messages without negatively affecting the internal
state. Second, the framework should be able to dynamically change
custom cryptographic primitives and their underlying values. Such
behavior is required, for example, to modify padding before per-
forming the encryption of application messages [1]. Third, the
framework should be able to trigger and detect vulnerabilities re-
sulting from buffer overflows and overreads.

Figure 1: An illustration of amodified TLS handshake.Modifi-
cations, such as adding, removing, andmanipulatingmessage
contents, are highlighted in red.

The TLS-Attacker project was first published alongside the pa-
per "Systematic Fuzzing and Testing of TLS Libraries" by Juraj
Somorovsky in 2016 [38] and released under the Apache 2.0 License
as an open-source repository on GitHub.1 At its core, TLS-Attacker
implements the TLS protocol, supplying client and server function-
alities. To achieve the requirements resulting from the related at-
tacks, TLS-Attacker implements two mechanisms: Workflow Traces
and Modifiable Variables. A Workflow Trace defines the protocol
flow of a TLS session on a high level. It contains a series of messages
TLS-Attacker sends to the analyzed TLS connection peer. Modifi-
able Variables can be integrated into a Workflow Trace to apply
further nuanced modifications to individual message fields. The

1https://github.com/tls-attacker/TLS-Attacker

modifications can be applied at different stages, for example, before
the computed values are encrypted.

Listing 1 shows an example of a protocol flow triggering the
Heartbleed bug. The code implements a custom protocol flow, re-
sulting in a crafted Heartbeat message being sent. The message
contains a dynamicmodification thatmanipulates its internal length
field. The resulting message will claim to contain 2,000 bytes, while
its actual content is significantly shorter. A vulnerable implementa-
tion would fail to verify the integrity of the length field and proceed
to read 2,000 bytes from its memory to echo the contents back to
the client. Defining the same message flow and manipulation is
also possible through XML instead of Java code.

1 Config config = Config.createConfig ();
2 WorkflowTrace trace = new WorkflowTrace ();
3 trace.addTlsAction(new SendAction(new ClientHelloMessage ()));
4 ServerHelloDoneMessage helloDone
5 = new ServerHelloDoneMessage ();
6 trace.addTlsAction(new ReceiveTillAction(helloDone ));
7 trace.addTlsAction(new SendAction(new ClientKeyExchange ()));
8 HeartbeatMessage heartbeat = new HeartbeatMessage ();
9 heartbeat.setLength(Modifiable.explicit (2000));
10 trace.addTlsAction(new SendAction(heartbeat ));
11 trace.addTlsAction(new ReceiveAction(new HeartbeatMessage ()));
12 State state = new State(config , trace);
13 DefaultWorkflowExecutor executor
14 = new DefaultWorkflowExecutor(state);
15 executor.executeWorkflow ();

Listing 1: A protocol flow triggering the Heartbleed bug

Development. Since its release in 2016, TLS-Attacker has been
continuously expanded to cover a range of protocol versions, from
SSL 3.0 to TLS 1.3, as well as DTLS 1.0 and DTLS 1.2. The project
further implements numerous TLS extensions and more than 330
cipher suites, including uncommon GOST and SM cipher suites
specified by the Russian and Chinese authorities. More than 70
people, including researchers, students, and pen testers from the
community, have contributed to TLS-Attacker. Since large-scale
studies require automated tests rather than individual workflow
traces, the TLS-Scanner project leverages the flexibility of TLS-
Attacker to evaluate clients and servers of TLS libraries. It provides
various probes to identify supported protocol versions and features
and to test for known vulnerabilities. Figure 2 gives an overview of
the main projects of the TLS-Attacker suite.

TLS-Attacker

TLS-Breaker TLS-Scanner

TLS-Crawler

TLS-Anvil TLS-Docker-Timer

TLS-Docker-Lib

Figure 2: Overview of projects within the TLS-Attacker suite.
All projects are accessible at https://github.com/tls-attacker/.

Maintenance. Currently, TLS-Attacker and its subprojects are
actively maintained and developed by the Ruhr University Bochum
(RUB), the Paderborn University (UPB), the Technology Innovation
Institute (TII), and the Hackmanit GmbH.

https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Breaker
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Crawler
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Docker-Timer
https://github.com/tls-attacker/TLS-Docker-Library
https://github.com/tls-attacker/


TLS-Attacker: A Dynamic Framework for Analyzing TLS Implementations ACSAC ’24, December 09–13, 2024, Waikiki, Hawaii

2 Impact
Academic Perspective. TLS-Attacker has been used in various

studies. The use cases range from lab evaluations to IPv4-wide
scans. Table 1 provides an overview of the publications that utilized
TLS-Attacker. Below, we briefly describe the scope of the papers
and how TLS-Attacker2 was used in these works.

• In 2016, Juraj Somorovsky presented TLS-Attacker as an
open-source TLS analysis framework [38]. Using fuzzing to
create messages with TLS-Attacker, Somorovsky identified
padding oracle vulnerabilities and buffer overflows in TLS
libraries such as Botan and MatrixSSL.

• In 2017, Bozic et al. presented a planning-based test approach
for TLS libraries [8]. Their work utilized TLS-Attacker to
create TLS messages sent in pre-specified orders to conduct
tests. Furthermore, Xian et al. used and extended TLS-Attack
to show that side-channel attacks on encrypted communica-
tion to trusted CPU enclaves are possible [41]. Simos et al.
built upon TLS-Attacker to create a framework for combi-
natorial testing of TLS servers [36]. The same year, Böck et
al. presented the ROBOT attack [7], proving that Bleichen-
bacher oracle vulnerabilities still exist in modern libraries.
They extended the TLS-Attacker framework with the ability
to better identify vulnerable libraries.

• In 2018, Engelbertz et al. conducted a study on the security of
eID endpoints [15]. They used TLS-Attacker to evaluate the
TLS features supported by these endpoints and to conduct
vulnerability tests. Also, in 2018, Simos et al. extended their
research in combinatorial testing of TLS servers with even
more capabilities for their TLS-Attacker-based tool.

• In 2019, Merget et al. systematically studied padding oracles
in TLS based on a scan of publicly deployed hosts on the
Internet [29]. They used TLS-Attacker to send messages with
manipulated padding at different points in the TLS session.
In the same year, Garn et al. applied combinatorial input
sequence generation to fingerprint web browsers [21]. They
utilized TLS-Attacker’s server implementation to send mal-
formed sequences of TLS messages, aiming to reveal unique
response patterns. Furthermore, Calzavara et al. presented a
quantitative security evaluation of TLS configurations from
the Alexa Top 10k using TLS-Attacker as one of their evalu-
ation tools [10].

• In 2020, Fiterau-Brostean et al. presented a study of eleven
DTLS libraries based on protocol state fuzzing [17], in which
they used TLS-Attacker to generate and parse protocol mes-
sages.

• In 2021, Brinkmann et al. present a study of cross-protocol
attacks against different application protocols that utilize
TLS with shared certificates [9]. In their work, they used
TLS-Attacker to test which certificates are accepted by web
browsers. In the same year, Merget et al. presented an attack
on the Diffie-Hellman (DH) key exchange as used in TLS ver-
sions up to 1.2 [28]. They used TLS-Attacker to conduct tim-
ing measurements that revealed side-channel vulnerabilities,
which enable an attacker to deduce the most significant bits
of a DH shared secret. In the same year, Drees et al. built upon

2Note that we use ’TLS-Attacker’ to refer to all projects based on TLS-Attacker here.

TLS-Attacker, creating a way to automatically scan for new
side-channel attacks using machine learning [13]. Henn et
al. analyzed German health websites [24] using TLS-Scanner
as one of the considered test tools. Fu et al. [20] explored
machine learning to detect malicious traffic. They used TLS-
Scanner’s vulnerability tests as part of their datasets.

• In 2022, McMahon Stone et al. [27] expanded upon the pre-
vious protocol state fuzzing studies by employing a gray-
box approach with an extended input alphabet. Again, TLS-
Attacker was used to construct and parse messages. In the
same year, Maehren et al. [26] conducted a study apply-
ing combinatorial testing to TLS libraries. They used TLS-
Attacker to generate test templates that evaluate the RFC
compliance of TLS libraries for varying session parameters.
Fiterau-Brostean et al. presented DTLS-Fuzzer [19], a DTLS
protocol state fuzzing tool based on TLS-Attacker. Asadian
et al. explored symbolic execution to test specification com-
pliance of TLS implementations [3]. They used TLS-Attacker
and the DTLS-Fuzzer mentioned above to generate test cases.
Saatjohann et al. [34] used TLS-Scanner’s vulnerability tests
to analyze medical devices and hospital IT infrastructure.
Garn et al. expanded upon previous work in the field of
TLS-based web browser fingerprinting [22]. They used TLS-
Attacker to send the fingerprinting message sequences.

• In 2023, Wu et al. studied the security of VPNs deployed at
academic institutions [40]. They used TLS-Attacker to assess
the server configuration of TLS-based VPN endpoints. In the
same year, Hebrok et al. [23] presented a study of weaknesses
in the TLS session ticket mechanism caused by insecure key
generation. They used TLS-Attacker to collect session tick-
ets in different protocol versions and test whether invalid
session resumption attempts were rejected correctly. Erinola
et al. further presented a study on the DTLS ecosystem [16].
Here, they used TLS-Attacker to evaluate the deployment
of DTLS protocol features and to identify denial of service
vulnerabilities. Berbecaru et al. proposed TLS-Monitor [5], a
network monitoring tool for vulnerability detection. They
used TLS-Attacker to build a testbed for the evaluation of
their tool. Wang et al. proposed a testing framework for 5G
network components [39] and used TLS-Attacker to verify
potential findings. Fiterau-Brostean et al. presented an au-
tomated analysis of DTLS state machines based on model
checking [18]. As in previous works, TLS-Attacker was used
to send and parse the messages used to infer the state ma-
chine. Scott used TLS-Anvil [35] to compare a newly pro-
posed TLS library to well-known open-source TLS libraries.

• In 2024, Dunsche et al. [14] presented a study of timing side-
channel vulnerabilities in open-source TLS libraries. Here,
TLS-Attacker was used to build various types of attack vec-
tors to allow for side-channel measurements. Berbecaru et al.
presented an intrusion detection tool called Threat-TLS [4].
Among other tools, they used TLS-Attacker to verify poten-
tial vulnerabilities in deployed hosts. Radoy et al. presented
a study on Partitioning Oracles in TLS session ticket han-
dling [30], using TLS-Attacker to collect and manipulate
session tickets.



ACSAC ’24, December 09–13, 2024, Waikiki, Hawaii Bäumer et al.

Year Venue Author(s) Paper

’16 CCS Somorovsky [38]
’17 CCS Xiao et al. [41]
’17 ICST Simos et al. [36]
’17 ICSTW Bozic et al. [8]
’18 (ePrint) Böck et al. [7]
’18 SQJ† Simos et al. [37]
’18 WOOT Engelbertz et al. [15]
’19 HotSoS Garn et al. [21]
’19 S&P Calzavara et al. [10]
’19 USENIX Security Merget et al. [29]
’20 USENIX Security Fiterau-Brostean et al. [17]
’21 (ePrint) Drees et al. [13]
’21 CCS Fu et al. [20]
’21 Computers & security Garn et al. [22]
’21 JDMIBE‡ Henn et al. [24]
’21 USENIX Security Merget et al. [28]
’21 USENIX Security Brinkmann et al. [9]
’22 CCS McMahon Stone et al. [27]
’22 DuD Saatjohann et al. [34]
’22 ICST Asadian et al. [3]
’22 ICST Fiterau-Brostean et al. [19]
’22 USENIX Security Maehren et al. [26]
’23 (ePrint) Scott [35]
’23 ACNS Wang et al. [39]
’23 CCNC Berbecaru et al. [5]
’23 NDSS Fiterau-Brostean et al. [18]
’23 USENIX Security Hebrok et al. [23]
’23 USENIX Security Erinola et al. [16]
’23 USENIX Security Wu et al. [40]
’24 ARES Berbecaru et al. [4]
’24 ESORICS Radoy et al. [30]
’24 USENIX Security Dunsche et al. [14]
†: Software Quality Journal
‡: Annual Conference of the German Society for Medical
Informatics, Biometry and Epidemiology

Table 1: Overview of academic papers using TLS-Attacker.
Papers from independent authors are highlighted in gray.

Industry Projects. The TLS-Attacker project suite has been used
in the following projects:

• In a study focusing on the security of the OpenSSL library,
commissioned by the German Federal Office of Information
Security (BSI project 154)3.

• In a project contributing to the development of the Botan
TLS library, commissioned by the German Federal Office of
Information Security (BSI project 197)4.

• In SIWECOs, a project aiming to help small and medium-
sized businesses estimate the security of their websites and
content management systems 5.

• In Future Trust 6, a project focusing on the security of eID
and electronic signature services.

• In KoTeBi, a project focusing on the development of a TLS
test suite for the analysis of RFC compliance 7 called TLS-
Anvil 8. The test suite is a finalist of the IT Security Award (IT-
Sicherheitspreis 2024 9) funded by the Horst Görtz Stiftung.

3https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/
OpenSSL-Bibliothek/DokumentationOpenSSL.pdf
4https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/
Projektzusammenfassung_Botan.pdf
5https://siwecos.de/en/
6https://pilots.futuretrust.eu/
7https://www.kotebi.de/en/
8https://github.com/tls-attacker/TLS-Anvil
9https://www.deutscher-it-sicherheitspreis.de/

• In the Botan TLS-library 10. Botan uses TLS-Anvil in its
automated testing environment 11.

3 Outlook
TLS is used in combination with various protocols, including HTTP,
FTP, and SMTP, to provide confidentiality, integrity, and authenti-
cation for different use cases. To fully assess the security of a TLS-
based application, an analysis of the interaction between TLS and
the application protocol is required to cover each protocol’s unique
attack surface. With the lessons learned from building, extending,
and maintaining TLS-Attacker, we are currently striving towards
other security protocols like QUIC or SSH. We aim to develop a uni-
versal analysis framework that is extendable with TLS-independent
protocols by reusing the techniques and tools created in the past
years and only implementing protocol-specific components. By
providing such a universal analysis framework, we aim to facilitate
further and better research of cryptographic protocols and reduce
the manual workload of real-world evaluations.

Acknowledgments
We thank all contributors of TLS-Attacker and its subprojects.
Niklas Niere, Felix Lange, Fabian Bäumer, Marcel Maehren, Conrad
Schmidt, and Nurullah Erinola were supported by the German Fed-
eral Ministry of Education and Research (BMBF) through the project
KoTeBi (16KIS1556K, 16KIS1559). Sven Hebrok and Nico Heitmann
were supported by the research project "North-Rhine Westphalian
Experts in Research on Digitalization (NERD II)", sponsored by the
state of North Rhine-Westphalia – NERD II 005-2201-0014. Marcus
Brinkmann was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2092 CASA - 390781972.

References
[1] Nadhem J. Al Fardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking

the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security and
Privacy (San Francisco, CA, USA). IEEE Computer Society, Los Alamitos, CA,
USA, 526–540. https://doi.org/10.1109/SP.2013.42

[2] Christopher Allen and Tim Dierks. 1999. The TLS Protocol Version 1.0. RFC
2246. https://doi.org/10.17487/RFC2246

[3] Hooman Asadian, Paul Fiterău-Broştean, Bengt Jonsson, and Konstantinos Sago-
nas. 2022. Applying Symbolic Execution to Test Implementations of a Network
Protocol Against its Specification. In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST) (Valencia, Spain). IEEE Computer Society, Los
Alamitos, CA, USA, 70–81. https://doi.org/10.1109/ICST53961.2022.00019

[4] Diana Gratiela Berbecaru and Antonio Lioy. 2024. Threat-TLS: A Tool for Threat
Identification in Weak, Malicious, or Suspicious TLS Connections. In Proceedings
of the 19th International Conference on Availability, Reliability and Security (Vienna,
Austria) (ARES ’24). Association for Computing Machinery, New York, NY, USA,
Article 125, 9 pages. https://doi.org/10.1145/3664476.3670945

[5] Diana Gratiela Berbecaru and Giuseppe Petraglia. 2023. TLS-Monitor: A Monitor
for TLS Attacks. In 2023 IEEE 20th Consumer Communications & Networking
Conference (CCNC) (Las Vegas, NV, USA). IEEE Computer Society, Los Alamitos,
CA, USA, 1–6. https://doi.org/10.1109/CCNC51644.2023.10059989

[6] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A Messy State of the Union: Taming the Composite State
Machines of TLS. In 2015 IEEE Symposium on Security and Privacy (San Jose,
CA, USA). IEEE Computer Society, Los Alamitos, CA, USA, 535–552. https:
//doi.org/10.1109/SP.2015.39

[7] Hanno Böck, Juraj Somorovsky, and Craig Young. 2018. Return Of Bleichen-
bacher’s Oracle Threat (ROBOT). In 27th USENIX Security Symposium (USENIX

10https://botan.randombit.net/
11https://github.com/randombit/botan/blob/master/.github/workflows/nightly.yml#
L146

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OpenSSL-Bibliothek/DokumentationOpenSSL.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OpenSSL-Bibliothek/DokumentationOpenSSL.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Projektzusammenfassung_Botan.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Projektzusammenfassung_Botan.pdf
https://siwecos.de/en/
https://pilots.futuretrust.eu/
https://www.kotebi.de/en/
https://github.com/tls-attacker/TLS-Anvil
https://www.deutscher-it-sicherheitspreis.de/
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.17487/RFC2246
https://doi.org/10.1109/ICST53961.2022.00019
https://doi.org/10.1145/3664476.3670945
https://doi.org/10.1109/CCNC51644.2023.10059989
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2015.39
https://botan.randombit.net/
https://github.com/randombit/botan/blob/master/.github/workflows/nightly.yml#L146
https://github.com/randombit/botan/blob/master/.github/workflows/nightly.yml#L146


TLS-Attacker: A Dynamic Framework for Analyzing TLS Implementations ACSAC ’24, December 09–13, 2024, Waikiki, Hawaii

Security 18) (Baltimore, MD, USA). USENIX Association, Berkeley, CA, USA, 817–
849. https://www.usenix.org/conference/usenixsecurity18/presentation/bock

[8] Josip Bozic, Kristoffer Kleine, Dimitris E. Simos, and Franz Wotawa. 2017.
Planning-Based Security Testing of the SSL/TLS Protocol. In 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW) (Tokyo, Japan). IEEE Computer Society, Los Alamitos, CA, USA, 347–355.
https://doi.org/10.1109/ICSTW.2017.63

[9] Marcus Brinkmann, Christian Dresen, Robert Merget, Damian Poddebniak, Jens
Müller, Juraj Somorovsky, Jörg Schwenk, and Sebastian Schinzel. 2021. ALPACA:
Application Layer Protocol Confusion - Analyzing and Mitigating Cracks in
TLS Authentication. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Berkeley, CA, USA, 4293–4310. https://www.usenix.org/
conference/usenixsecurity21/presentation/brinkmann

[10] Stefano Calzavara, Riccardo Focardi, Matus Nemec, Alvise Rabitti, and Marco
Squarcina. 2019. Postcards from the Post-HTTP World: Amplification of HTTPS
Vulnerabilities in the Web Ecosystem. In 2019 IEEE Symposium on Security and
Privacy (SP) (San Francisco, CA, USA). IEEE Computer Society, Los Alamitos, CA,
USA, 281–298. https://doi.org/10.1109/SP.2019.00053

[11] Joeri de Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implementations.
In 24th USENIX Security Symposium (USENIX Security 15) (Washington, D.C., USA).
USENIX Association, Berkeley, CA, USA, 193–206. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

[12] Tim Dierks and Eric Rescorla. 2006. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346. https://doi.org/10.17487/RFC4346

[13] Jan Peter Drees, Pritha Gupta, Eyke Hüllermeier, Tibor Jager, Alexander Konze,
Claudia Priesterjahn, Arunselvan Ramaswamy, and Juraj Somorovsky. 2021. Au-
tomated Detection of Side Channels in Cryptographic Protocols: DROWN the
ROBOTs!. In Proceedings of the 14th ACM Workshop on Artificial Intelligence and
Security (Virtual Event, Republic of Korea) (AISec ’21). Association for Comput-
ing Machinery, New York, NY, USA, 169–180. https://doi.org/10.1145/3474369.
3486868

[14] Martin Dunsche, Marcel Maehren, Nurullah Erinola, Robert Merget, Nicolai Bis-
santz, Juraj Somorovsky, and Jörg Schwenk. 2024. With Great Power Come
Great Side Channels: Statistical Timing Side-Channel Analyses with Bounded
Type-1 Errors. In 33rd USENIX Security Symposium (USENIX Security 24) (Philadel-
phia, PA, USA). USENIX Association, Berkeley, CA, USA, 6687–6704. https:
//www.usenix.org/conference/usenixsecurity24/presentation/dunsche

[15] Nils Engelbertz, Nurullah Erinola, David Herring, Juraj Somorovsky, Vladislav
Mladenov, and Jörg Schwenk. 2018. Security Analysis of eIDAS – The Cross-
Country Authentication Scheme in Europe. In 12th USENIXWorkshop on Offensive
Technologies (WOOT 18) (Baltimore, MD, USA). USENIX Association, Berkeley,
CA, USA. https://www.usenix.org/conference/woot18/presentation/engelbertz

[16] Nurullah Erinola, Marcel Maehren, Robert Merget, Juraj Somorovsky, and Jörg
Schwenk. 2023. Exploring the Unknown DTLS Universe: Analysis of the DTLS
Server Ecosystem on the Internet. In 32nd USENIX Security Symposium (USENIX
Security 23) (Anaheim, CA, USA). USENIX Association, Berkeley, CA, USA, 4859–
4876. https://www.usenix.org/conference/usenixsecurity23/presentation/erinola

[17] Paul Fiterău-Broştean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Konstanti-
nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS Implementations
Using Protocol State Fuzzing. In 29th USENIX Security Symposium (USENIX Se-
curity 20). USENIX Association, Berkeley, CA, USA, 2523–2540. https://www.
usenix.org/conference/usenixsecurity20/presentation/FiterÄČu-BroÅ§tean

[18] Paul Fiterău-Broştean, Bengt Jonsson, Konstantinos Sagonas, and Fredrik Tåquist.
2023. Automata-Based Automated Detection of State Machine Bugs in Pro-
tocol Implementations. In 30th Annual Network and Distributed System Secu-
rity Symposium (NDSS 2023) (San Diego, CA, USA). The Internet Society, Re-
ston, VA, USA. https://www.ndss-symposium.org/ndss-paper/automata-based-
automated-detection-of-state-machine-bugs-in-protocol-implementations/

[19] Paul Fiterău-Broştean, Bengt Jonsson, Konstantinos Sagonas, and Fredrik Tåquist.
2022. DTLS-Fuzzer: A DTLS Protocol State Fuzzer. In 2022 IEEE Conference
on Software Testing, Verification and Validation (ICST) (Valencia, Spain). IEEE
Computer Society, Los Alamitos, CA, USA, 456–458. https://doi.org/10.1109/
ICST53961.2022.00051

[20] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. 2021. Realtime Robust Malicious
Traffic Detection via Frequency Domain Analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (Virtual Event,
Republic of Korea) (CCS ’21). Association for Computing Machinery, New York,
NY, USA, 3431–3446. https://doi.org/10.1145/3460120.3484585

[21] Bernhard Garn, Dimitris E. Simos, Stefan Zauner, Rick Kuhn, and Raghu Kacker.
2019. Browser fingerprinting using combinatorial sequence testing. In Proceedings
of the 6th Annual Symposium on Hot Topics in the Science of Security (Nashville,
TN, USA) (HotSoS ’19). Association for Computing Machinery, New York, NY,
USA, Article 7, 9 pages. https://doi.org/10.1145/3314058.3314062

[22] Bernhard Garn, Stefan Zauner, Dimitris E. Simos, Manuel Leithner, Richard
Kuhn, and Raghu Kacker. 2022. A Two-Step TLS-Based Browser fingerprinting
approach using combinatorial sequences. Computers & Security 114 (2022), 102575.
https://doi.org/10.1016/j.cose.2021.102575

[23] Sven Hebrok, Simon Nachtigall, Marcel Maehren, Nurullah Erinola, Robert
Merget, Juraj Somorovsky, and Jörg Schwenk. 2023. We Really Need to Talk
About Session Tickets: A Large-Scale Analysis of Cryptographic Dangers with
TLS Session Tickets. In 32nd USENIX Security Symposium (USENIX Security
23) (Anaheim, CA, USA). USENIX Association, Berkeley, CA, USA, 4877–4894.
https://www.usenix.org/conference/usenixsecurity23/presentation/hebrok

[24] Frederic Henn, Richard Zowalla, and Andreas Mayer. 2021. The Security State
of the German Health Web: An Exploratory Study. Studies in Health Technology
and Informatics 283 (Sept. 2021), 180–185.

[25] Riku Hietamäki, Antti Karjalainen, Matti Kamunen, and Neel Mehta. 2014. CVE-
2014-0160. Retrieved November 20, 2024 from https://heartbleed.com/

[26] Marcel Maehren, Philipp Nieting, Sven Hebrok, Robert Merget, Juraj Somorovsky,
and Jörg Schwenk. 2022. TLS-Anvil: Adapting Combinatorial Testing for TLS
Libraries. In 31st USENIX Security Symposium (USENIX Security 22) (Boston, MA,
USA). USENIX Association, Berkeley, CA, USA, 215–232. https://www.usenix.
org/conference/usenixsecurity22/presentation/maehren

[27] Chris McMahon Stone, Sam L. Thomas, Mathy Vanhoef, James Henderson, Nico-
las Bailluet, and Tom Chothia. 2022. The Closer You Look, The More You Learn:
A Grey-box Approach to Protocol State Machine Learning. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security (Los
Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York,
NY, USA, 2265–2278. https://doi.org/10.1145/3548606.3559365

[28] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Johannes
Mittmann, and Jörg Schwenk. 2021. Raccoon Attack: Finding and Exploiting
Most-Significant-Bit-Oracles in TLS-DH(E). In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Berkeley, CA, USA, 213–230. https:
//www.usenix.org/conference/usenixsecurity21/presentation/merget

[29] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young, Janis Fliegen-
schmidt, Jörg Schwenk, and Yuval Shavitt. 2019. Scalable Scanning and Au-
tomatic Classification of TLS Padding Oracle Vulnerabilities. In 28th USENIX
Security Symposium (USENIX Security 19) (Santa Clara, CA, USA). USENIX As-
sociation, Berkeley, CA, USA, 1029–1046. https://www.usenix.org/conference/
usenixsecurity19/presentation/merget

[30] Maximilian Radoy, Sven Hebrok, and Juraj Somorovsky. 2024. In Search of Par-
titioning Oracle Attacks Against TLS Session Tickets. In Computer Security –
ESORICS 2024, Joaquin Garcia-Alfaro, Rafał Kozik, Michał Choraś, and Sokratis
Katsikas (Eds.). Springer Nature Switzerland, Cham, Switzerland, 320–340.

[31] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[32] Eric Rescorla and Tim Dierks. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. https://doi.org/10.17487/RFC5246

[33] Juliano Rizzo and Thai Duong. 2012. The CRIME attack. Re-
trieved November 20, 2024 from https://docs.google.com/presentation/d/
11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU

[34] Christoph Saatjohann, Fabian Ising, Matthias Gierlings, Dominik Noss, Sascha
Schimmler, Alexander Klemm, Leif Grundmann, Tilman Frosch, and Sebastian
Schinzel. 2022. Sicherheit medizintechnischer Protokolle im Krankenhaus. In GI
SICHERHEIT 2022. Gesellschaft für Informatik, Bonn, Germany, 143–158. https:
//doi.org/10.18420/sicherheit2022_09

[35] Michael Scott. 2023. On TLS for the Internet of Things, in a Post Quantum world.
Cryptology ePrint Archive, Paper 2023/095. https://eprint.iacr.org/2023/095

[36] Dimitris E. Simos, Josip Bozic, Feng Duan, Bernhard Garn, Kristoffer Kleine,
Yu Lei, and Franz Wotawa. 2017. Testing TLS Using Combinatorial Methods
and Execution Framework. In Testing Software and Systems, Nina Yevtushenko,
Ana Rosa Cavalli, and Hüsnü Yenigün (Eds.). Springer International Publishing,
Cham, Switzerland, 162–177.

[37] Dimitris E Simos, Josip Bozic, Bernhard Garn, Manuel Leithner, Feng Duan,
Kristoffer Kleine, Yu Lei, and Franz Wotawa. 2019. Testing TLS using planning-
based combinatorial methods and execution framework. Software Quality Journal
27, 2 (jun 2019), 703–729.

[38] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1492–1504. https://doi.org/10.1145/2976749.2978411

[39] Yong Wang, Rui Wang, Donglan Liu, Hao Zhang, Lei Ma, Fangzhe Zhang, Lili
Sun, and Zhenghao Li. 2023. A Framework for TLS Implementation Vulnerability
Testing in 5G. In Applied Cryptography and Network Security Workshops, Jianying
Zhou, Lejla Batina, Zengpeng Li, Jingqiang Lin, Eleonora Losiouk, Suryadipta
Majumdar, Daisuke Mashima, Weizhi Meng, Stjepan Picek, Mohammad Ashiqur
Rahman, Jun Shao, Masaki Shimaoka, Ezekiel Soremekun, Chunhua Su, Je Sen
Teh, Aleksei Udovenko, Cong Wang, Leo Zhang, and Yury Zhauniarovich (Eds.).
Springer Nature Switzerland, Cham, Switzerland, 284–298.

[40] Ka LokWu,ManHongHue, NgaiMan Poon, KinMan Leung,Wai Yin Po, Kin Ting
Wong, Sze Ho Hui, and Sze Yiu Chau. 2023. Back to School: On the (In)Security
of Academic VPNs. In 32nd USENIX Security Symposium (USENIX Security 23)
(Anaheim, CA, USA). USENIX Association, Berkeley, CA, USA, 5737–5754. https:
//www.usenix.org/conference/usenixsecurity23/presentation/wu-ka-lok

https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://doi.org/10.1109/ICSTW.2017.63
https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann
https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann
https://doi.org/10.1109/SP.2019.00053
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.17487/RFC4346
https://doi.org/10.1145/3474369.3486868
https://doi.org/10.1145/3474369.3486868
https://www.usenix.org/conference/usenixsecurity24/presentation/dunsche
https://www.usenix.org/conference/usenixsecurity24/presentation/dunsche
https://www.usenix.org/conference/woot18/presentation/engelbertz
https://www.usenix.org/conference/usenixsecurity23/presentation/erinola
https://www.usenix.org/conference/usenixsecurity20/presentation/Fiterău-Broştean
https://www.usenix.org/conference/usenixsecurity20/presentation/Fiterău-Broştean
https://www.ndss-symposium.org/ndss-paper/automata-based-automated-detection-of-state-machine-bugs-in-protocol-implementations/
https://www.ndss-symposium.org/ndss-paper/automata-based-automated-detection-of-state-machine-bugs-in-protocol-implementations/
https://doi.org/10.1109/ICST53961.2022.00051
https://doi.org/10.1109/ICST53961.2022.00051
https://doi.org/10.1145/3460120.3484585
https://doi.org/10.1145/3314058.3314062
https://doi.org/10.1016/j.cose.2021.102575
https://www.usenix.org/conference/usenixsecurity23/presentation/hebrok
https://heartbleed.com/
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://doi.org/10.1145/3548606.3559365
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity21/presentation/merget
https://www.usenix.org/conference/usenixsecurity19/presentation/merget
https://www.usenix.org/conference/usenixsecurity19/presentation/merget
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC5246
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://doi.org/10.18420/sicherheit2022_09
https://doi.org/10.18420/sicherheit2022_09
https://eprint.iacr.org/2023/095
https://doi.org/10.1145/2976749.2978411
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-ka-lok
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-ka-lok


ACSAC ’24, December 09–13, 2024, Waikiki, Hawaii Bäumer et al.

[41] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulner-
abilities in Secure Enclaves. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (Dallas, TX, USA) (CCS ’17).

Association for Computing Machinery, New York, NY, USA, 859–874. https:
//doi.org/10.1145/3133956.3134016

https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016

	Abstract
	1 Introduction
	2 Impact
	3 Outlook
	Acknowledgments
	References

