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Abstract
TLS-Attacker is an open-source framework for analyzing Transport
Layer Security (TLS) implementations. The framework allows users
to specify custom protocol flows and provides modification hooks to
manipulate message contents. Since its initial publication in 2016 by
Juraj Somorovsky, TLS-Attacker has been used in numerous studies
published at well-established conferences and helped to identify
vulnerabilities in well-known open-source TLS libraries. To enable
automated analyses, TLS-Attacker has grown into a suite of projects,
each designed as a building block that can be applied to facilitate
various analysis methodologies. The framework still undergoes
continuous improvements with feature extensions, such as DTLS
1.3 or the addition of new dialects such as QUIC, to continue its
effectiveness and relevancy as a security analysis framework.
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1 Introduction
Transport Layer Security (TLS) is arguably the most important
cryptographic protocol. It provides authenticity, integrity, and con-
fidentiality to any application-level protocol and thus can be used to
secure communication to web, email, or FTP servers. The protocol
has a long history, with the first developments starting in the 90s.
Back then, it was initially developed as the Secure Sockets Layer
(SSL) protocol. The protocol was adopted by the IETF and, in 1999,
released as the TLS 1.0 standard [2]. Since then, TLS 1.1 [12], 1.2 [32],
and 1.3 [31] were released. Along these standards, various proto-
col extensions were defined, which introduced new cryptographic
primitives, features, or even completely new messages.

The high importance of TLS also attracted the security research
community. Most notably, many new attacks were released at the
beginning of the 2010s. In the TLS community, this era is also ref-
erenced as the golden age of TLS attacks. The attacks exploited
the complexity of TLS and various TLS extension specifications
and affected the protocol in different attacker models. For example,
Rizzo and Duong showed how to exploit TLS compression for their
CRIME attacks [33]. Alfardan and Paterson presented Lucky13,
exploiting tiny timing side channels resulting from the padding
used in the MAC-then-pad-then-encrypt scheme [1]. Beurdouche
et al., and de Ruiter and Poll showed how TLS state machine imple-
mentations can be forced to process invalid messages, leading to
state machine violations [6, 11]. Probably the most visible attack
was, however, Heartbleed [25]. Heartbleed showed how a buffer
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overread vulnerability in a single implementation can lead to severe
consequences throughout the entire TLS ecosystem, such as exfil-
trating server private keys. These attacks triggered the research
community to improve TLS implementations and search for TLS
vulnerabilities in a systematic way.

The development in the area of TLS attacks also motivated our
research and culminated in the development of TLS-Attacker [38].
By developing TLS-Attacker, we considered the developments of
TLS attacks at that time and used them as the basis for defining
the requirements for a flexible TLS evaluation. Most importantly,
we observed that to implement TLS attacks and detect new ones,
the framework has to cover more than cryptographic attacks (cf.
Figure 1). First, the framework should allow for flexible protocol
message modifications potentially triggering state machine vulner-
abilities [6, 11]. This includes dynamically adding and removing
custom protocol messages without negatively affecting the internal
state. Second, the framework should be able to dynamically change
custom cryptographic primitives and their underlying values. Such
behavior is required, for example, to modify padding before per-
forming the encryption of application messages [1]. Third, the
framework should be able to trigger and detect vulnerabilities re-
sulting from buffer overflows and overreads.

Figure 1: An illustration of amodified TLS handshake.Modifi-
cations, such as adding, removing, andmanipulatingmessage
contents, are highlighted in red.

The TLS-Attacker project was first published alongside the pa-
per "Systematic Fuzzing and Testing of TLS Libraries" by Juraj
Somorovsky in 2016 [38] and released under the Apache 2.0 License
as an open-source repository on GitHub.1 At its core, TLS-Attacker
implements the TLS protocol, supplying client and server function-
alities. To achieve the requirements resulting from the related at-
tacks, TLS-Attacker implements two mechanisms: Workflow Traces
and Modifiable Variables. A Workflow Trace defines the protocol
flow of a TLS session on a high level. It contains a series of messages
TLS-Attacker sends to the analyzed TLS connection peer. Modifi-
able Variables can be integrated into a Workflow Trace to apply
further nuanced modifications to individual message fields. The

1https://github.com/tls-attacker/TLS-Attacker

modifications can be applied at different stages, for example, before
the computed values are encrypted.

Listing 1 shows an example of a protocol flow triggering the
Heartbleed bug. The code implements a custom protocol flow, re-
sulting in a crafted Heartbeat message being sent. The message
contains a dynamicmodification thatmanipulates its internal length
field. The resulting message will claim to contain 2,000 bytes, while
its actual content is significantly shorter. A vulnerable implementa-
tion would fail to verify the integrity of the length field and proceed
to read 2,000 bytes from its memory to echo the contents back to
the client. Defining the same message flow and manipulation is
also possible through XML instead of Java code.

1 Config config = Config.createConfig ();
2 WorkflowTrace trace = new WorkflowTrace ();
3 trace.addTlsAction(new SendAction(new ClientHelloMessage ()));
4 ServerHelloDoneMessage helloDone
5 = new ServerHelloDoneMessage ();
6 trace.addTlsAction(new ReceiveTillAction(helloDone ));
7 trace.addTlsAction(new SendAction(new ClientKeyExchange ()));
8 HeartbeatMessage heartbeat = new HeartbeatMessage ();
9 heartbeat.setLength(Modifiable.explicit (2000));
10 trace.addTlsAction(new SendAction(heartbeat ));
11 trace.addTlsAction(new ReceiveAction(new HeartbeatMessage ()));
12 State state = new State(config , trace);
13 DefaultWorkflowExecutor executor
14 = new DefaultWorkflowExecutor(state);
15 executor.executeWorkflow ();

Listing 1: A protocol flow triggering the Heartbleed bug

Development. Since its release in 2016, TLS-Attacker has been
continuously expanded to cover a range of protocol versions, from
SSL 3.0 to TLS 1.3, as well as DTLS 1.0 and DTLS 1.2. The project
further implements numerous TLS extensions and more than 330
cipher suites, including uncommon GOST and SM cipher suites
specified by the Russian and Chinese authorities. More than 70
people, including researchers, students, and pen testers from the
community, have contributed to TLS-Attacker. Since large-scale
studies require automated tests rather than individual workflow
traces, the TLS-Scanner project leverages the flexibility of TLS-
Attacker to evaluate clients and servers of TLS libraries. It provides
various probes to identify supported protocol versions and features
and to test for known vulnerabilities. Figure 2 gives an overview of
the main projects of the TLS-Attacker suite.

TLS-Attacker

TLS-Breaker TLS-Scanner

TLS-Crawler

TLS-Anvil TLS-Docker-Timer

TLS-Docker-Lib

Figure 2: Overview of projects within the TLS-Attacker suite.
All projects are accessible at https://github.com/tls-attacker/.

Maintenance. Currently, TLS-Attacker and its subprojects are
actively maintained and developed by the Ruhr University Bochum
(RUB), the Paderborn University (UPB), the Technology Innovation
Institute (TII), and the Hackmanit GmbH.

https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Breaker
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Crawler
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Docker-Timer
https://github.com/tls-attacker/TLS-Docker-Library
https://github.com/tls-attacker/
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2 Impact
Academic Perspective. TLS-Attacker has been used in various

studies. The use cases range from lab evaluations to IPv4-wide
scans. Table 1 provides an overview of the publications that utilized
TLS-Attacker. Below, we briefly describe the scope of the papers
and how TLS-Attacker2 was used in these works.

• In 2016, Juraj Somorovsky presented TLS-Attacker as an
open-source TLS analysis framework [38]. Using fuzzing to
create messages with TLS-Attacker, Somorovsky identified
padding oracle vulnerabilities and buffer overflows in TLS
libraries such as Botan and MatrixSSL.

• In 2017, Bozic et al. presented a planning-based test approach
for TLS libraries [8]. Their work utilized TLS-Attacker to
create TLS messages sent in pre-specified orders to conduct
tests. Furthermore, Xian et al. used and extended TLS-Attack
to show that side-channel attacks on encrypted communica-
tion to trusted CPU enclaves are possible [41]. Simos et al.
built upon TLS-Attacker to create a framework for combi-
natorial testing of TLS servers [36]. The same year, Böck et
al. presented the ROBOT attack [7], proving that Bleichen-
bacher oracle vulnerabilities still exist in modern libraries.
They extended the TLS-Attacker framework with the ability
to better identify vulnerable libraries.

• In 2018, Engelbertz et al. conducted a study on the security of
eID endpoints [15]. They used TLS-Attacker to evaluate the
TLS features supported by these endpoints and to conduct
vulnerability tests. Also, in 2018, Simos et al. extended their
research in combinatorial testing of TLS servers with even
more capabilities for their TLS-Attacker-based tool.

• In 2019, Merget et al. systematically studied padding oracles
in TLS based on a scan of publicly deployed hosts on the
Internet [29]. They used TLS-Attacker to send messages with
manipulated padding at different points in the TLS session.
In the same year, Garn et al. applied combinatorial input
sequence generation to fingerprint web browsers [21]. They
utilized TLS-Attacker’s server implementation to send mal-
formed sequences of TLS messages, aiming to reveal unique
response patterns. Furthermore, Calzavara et al. presented a
quantitative security evaluation of TLS configurations from
the Alexa Top 10k using TLS-Attacker as one of their evalu-
ation tools [10].

• In 2020, Fiterau-Brostean et al. presented a study of eleven
DTLS libraries based on protocol state fuzzing [17], in which
they used TLS-Attacker to generate and parse protocol mes-
sages.

• In 2021, Brinkmann et al. present a study of cross-protocol
attacks against different application protocols that utilize
TLS with shared certificates [9]. In their work, they used
TLS-Attacker to test which certificates are accepted by web
browsers. In the same year, Merget et al. presented an attack
on the Diffie-Hellman (DH) key exchange as used in TLS ver-
sions up to 1.2 [28]. They used TLS-Attacker to conduct tim-
ing measurements that revealed side-channel vulnerabilities,
which enable an attacker to deduce the most significant bits
of a DH shared secret. In the same year, Drees et al. built upon

2Note that we use ’TLS-Attacker’ to refer to all projects based on TLS-Attacker here.

TLS-Attacker, creating a way to automatically scan for new
side-channel attacks using machine learning [13]. Henn et
al. analyzed German health websites [24] using TLS-Scanner
as one of the considered test tools. Fu et al. [20] explored
machine learning to detect malicious traffic. They used TLS-
Scanner’s vulnerability tests as part of their datasets.

• In 2022, McMahon Stone et al. [27] expanded upon the pre-
vious protocol state fuzzing studies by employing a gray-
box approach with an extended input alphabet. Again, TLS-
Attacker was used to construct and parse messages. In the
same year, Maehren et al. [26] conducted a study apply-
ing combinatorial testing to TLS libraries. They used TLS-
Attacker to generate test templates that evaluate the RFC
compliance of TLS libraries for varying session parameters.
Fiterau-Brostean et al. presented DTLS-Fuzzer [19], a DTLS
protocol state fuzzing tool based on TLS-Attacker. Asadian
et al. explored symbolic execution to test specification com-
pliance of TLS implementations [3]. They used TLS-Attacker
and the DTLS-Fuzzer mentioned above to generate test cases.
Saatjohann et al. [34] used TLS-Scanner’s vulnerability tests
to analyze medical devices and hospital IT infrastructure.
Garn et al. expanded upon previous work in the field of
TLS-based web browser fingerprinting [22]. They used TLS-
Attacker to send the fingerprinting message sequences.

• In 2023, Wu et al. studied the security of VPNs deployed at
academic institutions [40]. They used TLS-Attacker to assess
the server configuration of TLS-based VPN endpoints. In the
same year, Hebrok et al. [23] presented a study of weaknesses
in the TLS session ticket mechanism caused by insecure key
generation. They used TLS-Attacker to collect session tick-
ets in different protocol versions and test whether invalid
session resumption attempts were rejected correctly. Erinola
et al. further presented a study on the DTLS ecosystem [16].
Here, they used TLS-Attacker to evaluate the deployment
of DTLS protocol features and to identify denial of service
vulnerabilities. Berbecaru et al. proposed TLS-Monitor [5], a
network monitoring tool for vulnerability detection. They
used TLS-Attacker to build a testbed for the evaluation of
their tool. Wang et al. proposed a testing framework for 5G
network components [39] and used TLS-Attacker to verify
potential findings. Fiterau-Brostean et al. presented an au-
tomated analysis of DTLS state machines based on model
checking [18]. As in previous works, TLS-Attacker was used
to send and parse the messages used to infer the state ma-
chine. Scott used TLS-Anvil [35] to compare a newly pro-
posed TLS library to well-known open-source TLS libraries.

• In 2024, Dunsche et al. [14] presented a study of timing side-
channel vulnerabilities in open-source TLS libraries. Here,
TLS-Attacker was used to build various types of attack vec-
tors to allow for side-channel measurements. Berbecaru et al.
presented an intrusion detection tool called Threat-TLS [4].
Among other tools, they used TLS-Attacker to verify poten-
tial vulnerabilities in deployed hosts. Radoy et al. presented
a study on Partitioning Oracles in TLS session ticket han-
dling [30], using TLS-Attacker to collect and manipulate
session tickets.
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Year Venue Author(s) Paper

’16 CCS Somorovsky [38]
’17 CCS Xiao et al. [41]
’17 ICST Simos et al. [36]
’17 ICSTW Bozic et al. [8]
’18 (ePrint) Böck et al. [7]
’18 SQJ† Simos et al. [37]
’18 WOOT Engelbertz et al. [15]
’19 HotSoS Garn et al. [21]
’19 S&P Calzavara et al. [10]
’19 USENIX Security Merget et al. [29]
’20 USENIX Security Fiterau-Brostean et al. [17]
’21 (ePrint) Drees et al. [13]
’21 CCS Fu et al. [20]
’21 Computers & security Garn et al. [22]
’21 JDMIBE‡ Henn et al. [24]
’21 USENIX Security Merget et al. [28]
’21 USENIX Security Brinkmann et al. [9]
’22 CCS McMahon Stone et al. [27]
’22 DuD Saatjohann et al. [34]
’22 ICST Asadian et al. [3]
’22 ICST Fiterau-Brostean et al. [19]
’22 USENIX Security Maehren et al. [26]
’23 (ePrint) Scott [35]
’23 ACNS Wang et al. [39]
’23 CCNC Berbecaru et al. [5]
’23 NDSS Fiterau-Brostean et al. [18]
’23 USENIX Security Hebrok et al. [23]
’23 USENIX Security Erinola et al. [16]
’23 USENIX Security Wu et al. [40]
’24 ARES Berbecaru et al. [4]
’24 ESORICS Radoy et al. [30]
’24 USENIX Security Dunsche et al. [14]
†: Software Quality Journal
‡: Annual Conference of the German Society for Medical
Informatics, Biometry and Epidemiology

Table 1: Overview of academic papers using TLS-Attacker.
Papers from independent authors are highlighted in gray.

Industry Projects. The TLS-Attacker project suite has been used
in the following projects:

• In a study focusing on the security of the OpenSSL library,
commissioned by the German Federal Office of Information
Security (BSI project 154)3.

• In a project contributing to the development of the Botan
TLS library, commissioned by the German Federal Office of
Information Security (BSI project 197)4.

• In SIWECOs, a project aiming to help small and medium-
sized businesses estimate the security of their websites and
content management systems 5.

• In Future Trust 6, a project focusing on the security of eID
and electronic signature services.

• In KoTeBi, a project focusing on the development of a TLS
test suite for the analysis of RFC compliance 7 called TLS-
Anvil 8. The test suite is a finalist of the IT Security Award (IT-
Sicherheitspreis 2024 9) funded by the Horst Görtz Stiftung.

3https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/
OpenSSL-Bibliothek/DokumentationOpenSSL.pdf
4https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/
Projektzusammenfassung_Botan.pdf
5https://siwecos.de/en/
6https://pilots.futuretrust.eu/
7https://www.kotebi.de/en/
8https://github.com/tls-attacker/TLS-Anvil
9https://www.deutscher-it-sicherheitspreis.de/

• In the Botan TLS-library 10. Botan uses TLS-Anvil in its
automated testing environment 11.

3 Outlook
TLS is used in combination with various protocols, including HTTP,
FTP, and SMTP, to provide confidentiality, integrity, and authenti-
cation for different use cases. To fully assess the security of a TLS-
based application, an analysis of the interaction between TLS and
the application protocol is required to cover each protocol’s unique
attack surface. With the lessons learned from building, extending,
and maintaining TLS-Attacker, we are currently striving towards
other security protocols like QUIC or SSH. We aim to develop a uni-
versal analysis framework that is extendable with TLS-independent
protocols by reusing the techniques and tools created in the past
years and only implementing protocol-specific components. By
providing such a universal analysis framework, we aim to facilitate
further and better research of cryptographic protocols and reduce
the manual workload of real-world evaluations.
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