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Abstract
Avatar2 is an open-source orchestration framework with a focus
on dynamic analysis of embedded devices’ firmware. Since its re-
lease in 2017, avatar2 has made significant contributions to the field
of embedded systems security research. In particular, it has facili-
tated numerous studies and tools in areas of automated re-hosting,
firmware fuzzing, and vulnerability discovery. This short paper
presents an overview of avatar2’s key features, its life as a project,
and its impact both on academic research and beyond.

The framework is publicly hosted under the Apache-2 License
on GitHub at https://github.com/avatartwo.
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1 Introduction
The avatar2 framework [28] is the worthy successor of AVATAR [41].
It is developed to facilitate the integration and interoperability be-
tween various binary analysis tools such as debuggers, emulators,
disassemblers, symbolic execution engines, and fuzzers.

The framework has a particular focus on dynamic binary-only
analysis. This is an essential method for ensuring the security, com-
pliance, and reverse engineering of software. For example, it offers
valuable insights into the final product delivered to clients when
used at the end of the Software Development Life Cycle (SDLC).
Binary-only analysis includes all the dependencies, such as third-
party libraries, without relying on assumptions about the compiler
used. Moreover, the developed analysis brings the benefit of be-
ing independent of the source code language. Another area where
binary-only analysis becomes crucial is situations where source
code is unavailable. This is a common scenario for studying exist-
ing software as part of reverse engineering or conducting in-depth
security research on malware, backdoors, and vulnerability detec-
tion. Debugging at the binary level allows developers to diagnose
and fix issues in software when source code access is restricted or
impractical, as could be the case for legacy software on outdated or
specialized hardware platforms.

Binary-only analysis includes a wide range of static and dynamic
techniques. Typically, the process starts with disassembling and
decompiling. This allows the conversion of the binary code into
assembly or higher-level language that approximates the original
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source code. More powerful static analysis can then take place to
better understand the program structure, such as signature and
function identification or binary diffing. Beyond these, dynamic
analysis observes runtime execution. For example, patching the
binary program helps to modify the code’s behavior. Profiling and
instrumentation insert hooks to monitor execution. This helps in
understanding the program’s performance and interaction with its
environment, including file systems, networks, and system calls.
More advanced techniques include fuzzing, which tests the binary
with unexpected inputs; symbolic and concolic execution, which
explore multiple execution paths simultaneously; and taint analysis,
which tracks the flow of tainted data through the program.

It has often been a challenge to extend and improve the use
of these tools and techniques to more diverse and heterogeneous
targets. Embedded systems represent a typical case [29]. They offer
unique challenges due to their constrained resources, specialized
hardware, and often proprietary software environments. These
factors make the analysis more complex and necessitate adaptable
tools capable of interfacing with a wide range of architectures and
operating systems. Traditional analysis tools are typically designed
with general-purpose computing environments in mind. They may
struggle to cope with the particularities of embedded systems.

The importance of combining state-of-the-art techniques was
illustrated during the DARPA Cyber Grand Challenge (CGC) in
2016. In this high-stakes competition, teams were tasked with au-
tonomously identifying vulnerabilities in complex software systems.
To tackle this, many teams opted to combine fuzzing with symbolic
execution [5, 15, 31, 36]. The two techniques offer a powerful ap-
proach to vulnerability detection as it is recognized today. Fuzzing
excels at quickly generating large volumes of test cases to explore a
program’s behavior, but may have difficulties finding specific inputs
to uncover new execution paths. In contrast, symbolic execution
leverages the program structure to explore different execution paths
but suffers from an exponential path explosion problem, limiting
its scalability. The competition revealed diverse approaches to how
teams integrated these techniques together. This richness under-
scores the value of improving integration and interoperability to
craft tailored solutions to a specific problem.

However, the integration of multiple tools into a cohesive work-
flow brings its own set of challenges. One of the primary difficulties
lies in managing these tools effectively: deciding how and when to
switch from one environment to another and ensuring that the tools
communicate with each other in a meaningful way. This requires a
robust system for orchestrating the various tools and ensuring that
they operate in concert rather than in isolation.

Avatar2 addresses these challenges by providing a unified plat-
form facilitating the integration of diverse tools and offering the
necessary control mechanisms to manage their interactions.

https://github.com/avatartwo
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Figure 1: Avatar2 Overview. The core of the framework or-
chestrates multiple targets, which are Python abstractions of
binary analysis tools, physical devices, or emulators. The tar-
gets utilize different unified protocols to communicate with
their respective endpoint (i.e., tool, device, or emulator).

2 History
The design principles of avatar2 are rooted in, and improving upon,
the first iteration of AVATAR [41] published in 2014. AVATAR enables
partial emulation of firmware by integrating an emulator with phys-
ical hardware. The main dynamic analysis technique was selective
symbolic execution with S2E [6]. Following are the key concepts
introduced by its predecessor:

• Target Orchestration. The ability to control the program
execution over multiple targets (S2E and the physical device)
is crucial for partial emulation. This also allows the frame-
work to automatically respond to specific events triggered
by the environment (e.g., interruptions) or defined by the
analyst.

• State transfer and synchronization. Transferring exe-
cution states (i.e., CPU register, memory content) across
different analysis environments allows for greater flexibility
in dynamic analysis. This is particularly valuable for scenar-
ios where specific stages of firmware execution must occur
on the physical device to accurately capture its behavior.
For instance, during firmware initialization, many hardware-
specific interactions take place, making it advantageous to
start the firmware on the actual hardware.

• Separation of Execution and Memory. This allows to use
remote memory where the execution can proceed on one
target while some memory accesses are handled by another.
A common application is when the main execution occurs
in an emulator, but accesses to memory-mapped peripherals
are forwarded to the actual hardware.

While AVATAR laid the groundwork, avatar2 expands upon and
generalizes these concepts, enhancing usability and applicability
across a broader range of scenarios.

3 Avatar2 : Concepts and Design
Avatar2 is built around four main components as illustrated by
Figure 1: core, targets, protocols, and endpoints.

• Core. The core serves as the main interface for the analyst,
orchestrating the interaction between different components
and responding to various events. It acts as the central con-
trol unit, managing the overall analysis process.

• Targets. These represent abstracted interfaces to different
analysis tools (endpoints). They do not directly communicate
with the tools but instead rely on protocols to manage the
interactions. This abstraction allows avatar2 to support a
wide range of tools and easily integrate new ones.

• Protocols. These are responsible for handling specific types
of interactions, such as memory operations, execution con-
trol, and register access. By decoupling the protocols from
the targets, avatar2 allows for the reuse of communication
patterns across different tools, making it easier to prototype
new targets and integrate additional analysis environments.

• Endpoints. Endpoints are the actual tools or devices being
controlled by avatar2 . These can be emulators, debuggers, or
physical devices, which are orchestrated together to perform
complex analysis tasks.

Moreover, avatar2 offers unique features that make dynamic
analysis easier on embedded systems by being adaptable to their
unique characteristics.

• Architecture Independence. avatar2 is designed to support
multiple architectures, making it adaptable to the diverse
range of instruction sets found in software and embedded
systems. It uses amodular approach to describe architectures,
which allows for easy extension to new architectures.

• Memory Orchestration. To synchronize analysis across
different platforms, avatar2 provides a consistent internal
memory representation. Unlike other tools that use page-
granularity memory representations, avatar2 can handle
memory ranges of arbitrary sizes, which is particularly use-
ful for embedded devices with memory-mapped peripherals.

• Peripheral Modeling. Avatar2 allows the modeling of cus-
tom peripherals that might not be implemented or repre-
sentable in endpoints. This feature allows analysts to create
simple models in Python that can respond to memory reads
and writes, simulating the behavior of hardware peripherals.

• Plugin System. The framework’s minimalistic core is com-
plemented by a rich event-driven plugin system that auto-
mates repetitive tasks and extends functionality. Plugins can
hook into various events during analysis, enabling custom
callbacks or adding new features to the framework.

• Configurable Machine. Although not directly integrated
into avatar2 , the Configurable Machine is a custom full-
system QEMU machine developed as part of the avatar2
project. It combines QEMU’s high-speed emulation with a
flexible platform (memory layout, cores, peripherals, etc) con-
figuration system. This design pairs well with the peripheral
modeling and the hardware I/O forwarding.

4 Project Life
Avatar2 was initially released in June 2017, with a publication de-
scribing the framework only following later in 2018 [28]. This initial
release comprised multiple repositories, including the QEMU fork
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that implements the Configurable Machine and examples show-
casing typical usage of the framework. Additional repositories, in-
cluding artifact releases for publications leveraging the framework,
were added over time. As of September 2024, the main repository
of avatar2 had four additional minor releases and received 387
commits spanning 27 different contributors.

The project initially supports ARM 32-bit, x86, and x86_64 archi-
tectures, later received additional MIPS 32-bit support, and external
forks include aarch64 support (e.g., [21, 22]). The number of compat-
ible targets has doubled since the launch of the framework. Initially
supporting four targets (GDB, OpenOCD, QEMU, and PANDA),
we have expanded the framework to include targets for the JLink
debugger, Inception debugger [8], Unicorn emulator and PyPanda
emulator [10]. All of these implement abstractions required to in-
teract with a specific endpoint, and we observed that third-party
tools often borrow and adapt these abstractions to fit their specific
needs [7, 14, 16].

Beyond academic publication expanding avatar2 , covered in the
next Section, three master’s theses were carried out in close col-
laboration with the core avatar2 development team. AFLtar [3]
combines avatar2 with AFL and AFL-Unicorn to enable coverage-
guided fuzzing of devices with complex peripherals. Visser [19] pro-
vides a comprehensive survey and analysis of automated firmware
re-hosting approaches for security analysis of embedded systems.
Albrecht [1] extends avatar2 with new plugins to enable hardware-
in-the-loop rehosting of asynchronous, interrupt-driven firmware
using complex peripherals like CAN and WiFi controllers.

Examples. The initial release of avatar2 included two examples:
a fully virtualized orchestration showcasing the concept of remote
memory and a hardware-in-the-loop setup demonstrating state
transfer. Later, we released three further examples with the artifact
of avatar2’s main publication: a reimplementation of a PLC rootkit, a
concolic execution analysis for finding a vulnerability in the Firefox
browser, and an orchestration setup for tracing MMIO interactions
with a physical device and later replaying it against the emulated
firmware without the device attached1.

To further ease usage of the framework, we later developed and
publicly released three further example analysis projects targeting
additional widely deployed embedded systems, such as a Fitbit
watch, an nRF52 Bluetooth chip, and the Raspberry Pi Pico2.

5 Impact
5.1 Academic Impact
As of September 2024, the papers for avatar2 [28] and AVATAR [41]
have been cited 172 and 462 times, respectively, according to Google
Scholar. Besides this, and more importantly, the avatar2 framework
has been the foundation for several influential extensions and re-
search projects. The main use cases of avatar2 have been in different
areas of firmware re-hosting [13], vulnerability discovery, research
replication, and reproduction, as well as enabling advanced dy-
namic analysis of embedded system’s firmware. Table 1 highlights
the components of avatar2 utilized by later work, and we discuss
the different areas of applications in the following.

1https://github.com/avatartwo/bar18_avatar2.
2https://github.com/avatartwo/avatar2-examples.

Peripheral Modeling based Rehosting. Pretender [17] builds on
avatar2 to address the challenges of firmware re-hosting [13] by
automatically creating interactive, stateful models of hardware pe-
ripherals from recorded I/O interactions. Conware [38] extends
this approach, further abstracting these models to enable pluggable
and combinable peripheral emulation across different firmware
and hardware configurations. Both approaches leverage avatar2’s
peripheral modeling mechanisms extensively. Laelaps [4] utilizes
avatar2’s capabilities to run symbolic execution on firmware, in-
ferring the expected behavior of peripherals from the firmware
itself. DICE [27] enables firmware analyzers to emulate and manip-
ulate Direct Memory Access (DMA) inputs without needing actual
hardware or firmware modifications.

Abstraction based Rehosting. HALucinator [7] leverages avatar2
to decouple firmware from its hardware dependencies using High-
Level Emulation (HLE). It enables dynamic analysis by emulat-
ing Hardware Abstraction Layers (HALs) and identifying vulner-
abilities in firmware without requiring specific hardware. SYM-
BION [16] combines symbolic and concrete execution to efficiently
analyze programs. It applies symbolic execution to targeted code
sections while relying on concrete execution for the rest of the pro-
gram’s interactions with its environment. It reemploys the notions
of the target from avatar2 for orchestrating between its concrete and
symbolic execution contexts. SyncEmu [22] focuses on re-hosting
the Trusted Applications (TA) running on TEEs using avatar2’s
Configurable Machine.

Fuzzing. WYCINWYC [29] studied the challenges encountered
during fuzzing embedded systems and used avatar2 to highlight
the advantages of rehosting-based approaches. Unicorefuzz [25]
extends avatar2 by utilizing CPU emulation to fuzz kernel compo-
nents and device drivers in environmentswhere traditional userland
fuzzing is impractical. Fuzzware [35] automates and improves fuzz
testing of embedded device firmware. It uses avatar2 for periph-
eral modeling, allowing execution of additional dynamic analysis
on the re-hosted firmware. Firmwire [18] adapts avatar2 for the
analysis of baseband processors in smartphones. It offers a scalable
full-system emulation and fuzzing platform focused on discovering
vulnerabilities in cellular protocols. FirmHybridFuzzer [37] extends
Laelaps and avatar2 with hybrid fuzzing to uncover vulnerabilities
in microcontroller firmware. Sizzler [14] relies on avatar2 to man-
age the emulation environment for fuzzing Programmable Logic
Controllers (PLC). EL3XIR [21] extends avatar2 to enable effective
re-hosting and fuzzing of the secure monitor firmware (EL3) in
TrustZone-based Trusted Execution Environments (TEEs).

Overall, publications leveraging avatar2 reported identifying
various CVEs [4, 7, 14, 18, 21, 35], with the majority classified as
memory corruption vulnerabilities.

Facilitating Research and Reproducability. The configurable ma-
chine has been reused and extended by several other frameworks [10,
11, 21], and we observed that avatar2 helps to build systems allow-
ing reproducible experiments as illustrated in [2, 32]. Moreover,
avatar2 has been used in qualitative [8, 9, 12, 16, 39, 40, 42] and
quantitative [20, 23, 24] comparisons.

https://github.com/avatartwo/bar18_avatar2.
https://github.com/avatartwo/avatar2-examples.
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Publication Year Target Orchestration State Transfer Peripheral Modeling Configurable Machine
WYCINWYC [29] 2018 ✔ ✔ ✔ ✔
Unicorefuzz [25] 2019 ✔ — — —
Pretender [17] 2019 — — ✔ —
HALucinator [7] 2020 ✔ — — —
Laelaps [4] 2020 — ✔ — —
SYMBION [16] 2020 ✔ — — —
Conware [38] 2021 — — ✔ —
DICE [27] 2021 — — ✔ —
PyPANDA [10] 2021 — — — ✔
Fuzzware [35] 2022 — — ✔ —
Firmwire [18] 2022 — — ✔ ✔
FirmHybridFuzzer [37] 2023 — — ✔ ✔
Sizzler [14] 2023 ✔ — — ✔
EL3XIR [21] 2024 — — ✔ ✔
SyncEmu [22] 2024 — — ✔ ✔

Table 1: Avatar2 ’s features usage accross publications.

5.2 Impact beyond Academia
AVATAR originated from a research contract with Google, with sub-
sequent funding for avatar2 provided by Siemens AG - Technology.
By now, multiple companies confidentially reported the use of the
framework or its derivatives for internal purposes. As of September
2024, the main repository of avatar2 accumulated 518 stars and 98
forks, showcasing the wider community created by the framework.

Additionally, avatar2 has been discussed by third parties (e.g., [33])
and is featured in an educative book on vulnerability research with
emulated IoT devices [30]. Parts of avatar2 are further included in
a large-scale source code dataset maintained by Hugging Face3.

6 Discussion
6.1 Lessons Learned
Designing and maintaining avatar2 over half a decade provided us
with multiple insights:

(1) Value of Software Design Practices.We believe that one
driving factor for avatar2’s adoptionwas the design decisions
made early on in the project’s life. While, in our experience,
a lot of system security research code grows organically,
we dedicated a considerable amount of time to creating,
discussing, and revising the initial design of avatar2 , based
on insights from the original AVATAR. These design decisions,
leading to clean abstractions and extensability, benefit the
framework up to this day.

(2) Orchestration and Integration with other frameworks.
A key benefit of avatar2 was to allow flexible orchestration
of other frameworks. This idea resonated with the commu-
nity. However, when integrated with other frameworks, it
was not always clear which one should take over the core
orchestration tasks. While this allowed different communi-
ties to work with avatar2 , it also led to code duplication and
fragmentation. We believe that better synchronization could
lead to better synergies between different frameworks.

(3) Packaging Artifacts. When we released the initial version
of avatar2 , artifact evaluation possibilities were not widely
deployed yet, with ACSAC being one of the exceptions. De-
spite this, we put additional focus onmaking the experiments
of avatar2 replicable, with a separate experiments repository,
basic documentation, and a pre-packaged environment for

3https://huggingface.co/datasets/Samip/Scotch/viewer

running the framework. We believe this tremendously in-
creased the impact of our work, as it allowed other teams
to build on top of the provided examples and documenta-
tion. Thus, we highly appreciate the shift in the community
toward more widely used artifact evaluations but would,
regardless, recommend packaging artifacts in replicable en-
vironments (e.g., via containers or virtual machines).

6.2 Outlook & Future Work
We plan to continue maintaining the avatar2 framework in the fu-
ture. In the short-term, we aim to mainline the community version
of the aarch64 architecture [21, 22] extension. In the long run, we
plan to enhance avatar2’s capabilities by developing and integrating
additional targets. Possible examples include enabling the orches-
tration of advanced fuzzing campaigns via a LibAFL QEMU [26]
target or enhanced concolic execution capabilities via integration
with SymQemu [34].

Looking into the extended future, we believe a rewrite of avatar2’s
core would overcome the current limitations of the framework. At
the moment, users of the framework occasionally experience issues
due to the multi-threading and multi-process approach of avatar2 .
We believe that modern languages, such as Rust or Zig, have the
potential to increase the overall robustness and reliability of the
framework while exposing Python bindings, allowing integration
with the existing target, protocol, and plugin code bases.

7 Conclusion
Avatar2 is a multi-target orchestration framework for dynamic
binary analysis. Since its inception in 2017, it had a significant
impact, facilitating the analysis of various embedded systems and
forming the basis for follow-up research.

Avatar2 served as the basis for a variety of additional research
tooling, and selected parts of it have been integrated into other
high-profile frameworks, such as angr and PANDA.
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