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Abstract

Tesseract is an open-source framework which enables an unbi-
ased realistic, time-aware evaluation of machine learning-based
malware classification. The Tesseract framework was originally
released in conjunction with a paper published at USENIX Security
Symposium 2019, which demonstrated how to remove experimen-
tal bias. Since the artifact’s original release, it has been presented in
many keynotes and seminars, and has been used by academics and
practitioners worldwide, influencing the design of further research
questions and experiments in the field of ML-based malware detec-
tion, and garnering 415 Google Scholar citations (as of September
2024).

Citation Note

This paper highlights the impact that Tesseract has had
since its original release. If you use Tesseract as part
of a project or publication, then please cite the original
work https://www.usenix.org/conference/usenixsecurity19/
presentation/pendlebury and the extended work https://arxiv.
org/abs/2402.01359.
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1 Introduction

The trend of near-perfect 𝐹1 scores in malware classification papers
five years ago led to the question of whether Android malware
classification was a solved problem. Malware classification was in
fact not a solved problem, and the near-perfect performance was a
result of spatio-temporal biases. Tesseract was developed to allow
a realistic evaluation of a malware classifier over time free from
spatial and temporal bias. After Tesseract’s release, it became the
benchmark for how to perform fair malware classification evalua-
tion, influencing the experimental design of the subsequent papers
as evidenced by its 415 citations to date.

Tesseractwas implemented as a Python library, designed to eas-
ily integrate with commonMLworkflows. The design of Tesseract
was heavily inspired by and is fully compatible with the popular

machine learning libraries Scikit-learn [131], Keras [37], and
PyTorch [129]. Tesseract provides the following core capabilities:

• Temporal bias removal through maintaining the temporal
training consistency (C1) and temporal goodware/malware
time-window consistency (C2).

• Spatial bias removal through enforcing a realistic malware-
to-goodware ratio in testing (C3).

• Time-aware evaluation of a malware classifier with extensi-
ble integration of sampling and rejection mechanisms.

• Time-aware metric (AUT) to capture a classifier’s robustness
to time decay and allows for the fair comparison of different
algorithms with optional observation time window.

• Tuning algorithm to empirically optimize the performance
of a classifier when malware is the minority class.

The Tesseract framework was originally released in 2019, in a
private repository that could be accessed with a request form. Since
2024, it has been re-released fully open source at:

https://github.com/s2labres/tesseract-ml-release
The re-release of Tesseract is part of the conference paper’s jour-
nal extension [78], which included updates and refactoring of the
framework. Before being released on GitHub, Tesseract was ac-
cessed by more than 102 universities, 10 companies, and 6 research
centers. Additional information regarding Tesseract can be found
on its project page at: https://s2lab.cs.ucl.ac.uk/projects/tesseract/.

2 The Tesseract Framework

The goal of Tesseract is to ensure an unbiased and time-aware
evaluation of ML classifiers (e.g. malware detection). To achieve this,
Tesseract enforces temporal and spatial constraints to prevent
performance inflation as a result of experimental bias. Tesseract
aims to reduce the burden on the algorithm designer by keeping
track of these properties at each stage of the experiment pipeline.
Furthermore, Tesseract is constructed in a modular fashion corre-
sponding to the different stages of the evaluation cycle to improve
interoperability. Therefore, any component of the framework can
be appropriately selected and used in conjunction with other li-
braries or methodologies. The following subsections highlight the
core contributions of Tesseract and discuss their connection to
the different stages of the experiment pipeline (see Figure 1).

2.1 Temporal Bias

Although a sample is typically represented by a feature vector𝑋 and
a ground truth label 𝑦, Tesseract additionally expects a timestamp
𝑡 . This allows Tesseract to enforce temporal consistency when

https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://arxiv.org/abs/2402.01359
https://arxiv.org/abs/2402.01359
https://github.com/s2labres/tesseract-ml-release
https://s2lab.cs.ucl.ac.uk/projects/tesseract/
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Figure 1: The pipeline of the Tesseract artifact, using malware classification as an example.

partitioning the dataset for training, validation, and testing sets.
The test set is further split into separate testing periods, each of
which contains only test samples from that particular time window
(time-aware split in Figure 1). The temporal partitioning enforces
the following two constraints to eliminate temporal bias.

• (C1) Temporal training consistency. All samples in the
training set must be strictly temporally precedent to the
samples in the testing set.

• (C2) Temporal goodware/malware time-window con-

sistency. In every testing slot, all test samples must be from
the same time window.

The violation of these temporal constraints causes inflated classifier
performance as a result of the incorporation of future knowledge
(C1) and distinguishing by artifactual differences (C2).

2.2 Spatial Bias

After the dataset has been temporally split into the training and
testing sets, the removal of spatial bias can be performed. Each
testing period is then checked against the following constraint and
enforced via rebalancing.

• (C3) Realistic mw-to-gw ratio in testing. The distribu-
tion of malware within the testing periods must be as close
as possible to the estimated distribution of malware in the
wild.

The violation of this spatial constraint can cause an inflated per-
formance as a result of changing the dynamics of the underlying
classification problem.

2.3 Tuning Algorithm

The tuning algorithm has the objective of estimating an optimal
training set class-ratio (e.g., percentage of malware) to improve
a target performance metric on a time-aware validation set. The
purpose is to tune the training set so that a classifier achieves a
higher performance rate over time.

The tuning algorithm enforces the constraints C1, C2, C3 and
relies on AUT (see subsection 2.5) to achieve three possible targets
for the malware class: a higher F1 score, higher Precision, or higher

Recall. The algorithm performs progressive subsampling of the
goodware class to optimize the training class distribution subject
to a maximum error rate. This process is performed on the training
set available in the rebalancing stage of the evaluation (rebalance
in Figure 1).

2.4 Time-aware Evaluation

After all constraints are enforced and optional tuning has occurred,
the classifier is trained on the training set available at the current
iteration of the evaluation. The classifier then attempts to predict
the correct classes for the test samples in the current period (train
and predict in Figure 1). Before repeating the process on the next
test period, the classifier can perform rejection and selection as
described below.

Rejection Mechanism. A classifier can choose not to classify a
particular observation (abstaining classification; classification with
a rejection option, e.g., [15, 77]); rejected objects are quarantined
for manual inspection (reject in Figure 1). Their predictions are not
included in the performance results, however, Tesseract reports
the quantity of quarantined samples per period. Rising quarantined
samples signal the onset of concept drift, the aging of underlying
ML models, and the opportunity to explore test-time adaptation
and continual learning settings [34].

Selection Mechanism. Following the rejection stage, an active
learning sample selection strategy can be deployed to select the
most informative testing samples to relabel manually (select in
Figure 1). These samples are then integrated into the training set
prior to the next cycle [34]. As in rejection, Tesseract reports the
number of selected samples per period.

2.5 Time-Aware Metrics

Tesseract maintains a set of standard metrics calculated during
each iteration of the evaluation cycle. Furthermore, Tesseract
provides the AUT (Area Under Time) metric, which allows the
evaluation of malware classifier performance against time decay in
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realistic experimental settings obtained by enforcing C1, C2, and
C3. AUT is defined as follows:

𝐴𝑈𝑇 (P, 𝑁 ) = 1
𝑁 − 1

𝑁−1∑︁
𝑘=1

[P(𝑋𝑘+1) + P(𝑋𝑘 )]
2 (1)

where P(𝑋𝑘 ) is the value of the point estimate of the performance
metric P (e.g., 𝐹1) evaluated at point 𝑋𝑘 := (𝑊 + 𝑘Δ), 𝑁 is the
number of test slots, and 1/(𝑁 − 1) is a normalization factor so that
AUT ∈ [0, 1]. The perfect classifier with robustness to time decay
in the time window 𝑆 has AUT = 1.

3 Impact

Since its initial release in August 2019, Tesseract has generated
significant impact across academia, education, and industry. The
statistics on impact in this section refer primarily to the timeframe
of August 2019–January 2024, where accessing Tesseract required
filling out a form. Tesseract is now freely accessible on GitHub.

3.1 Academic Impact

In the context of academic impact, 108 academic or research insti-
tutions from 24 countries around the world requested the artifact
prior to its re-release. The complete alphabetized list can be found
in Appendix A. Moreover, the Tesseract paper [133], which intro-
duced the artifact, has received 415 citations to date. The impact
of Tesseract on subsequent research is evident through the con-
sideration and elimination of temporal and spatial biases in the
evaluation of classifiers across a wide range of machine learning
applications in security domains. We delineate the areas of research
in which the Tesseract artifact has had a notable impact as follows.

• Spatial: 17 papers removed spatial bias from their evalua-
tion citing Tesseract [17–21, 23, 46, 54, 75, 92, 98, 117, 146,
152, 176, 179, 182].

• Temporal: 34 papers removed temporal bias from their
evaluation citing Tesseract [5, 6, 28, 42, 44, 47, 49, 50, 55,
64, 68, 72, 73, 80–82, 89, 96, 125, 143, 144, 153, 159, 163, 164,
171, 173, 183–186, 190, 191, 197].

• Spatio-Temporal: 27 papers removed both temporal and
spatial bias from their evaluation citing Tesseract [9, 25,
26, 35, 39, 48, 51, 59, 74, 88, 93, 97, 100, 101, 107, 109, 115,
121, 124, 157, 161, 166, 172, 177, 178, 193, 194].

• AUT: 10 papers used the AUT Metric to perform their
evaluation [26, 39, 59, 65, 93, 186, 190, 193, 194, 199].

Beyond Tesseract’s concrete impact on the evaluations of aca-
demic papers, it has also influenced PhD and Masters theses, as
well as surveys and SoKs on the topic of classifications tasks for
security.

• PhD: 41 PhD theses cite Tesseract [2–4, 24, 32, 33, 40, 41,
43, 53, 58, 63, 67, 70, 71, 76, 84–86, 94, 99, 106, 114, 128, 132,
140, 142, 145, 148, 149, 151, 155, 156, 165, 169, 175, 181, 187,
195, 196, 198].

• Masters: 12Masters theses cite Tesseract [27, 69, 120, 122,
123, 127, 130, 141, 154, 162, 167, 189].

• Surveys & SoKs: 38 surveys and SoKs cite Tesseract as
part of their review [1, 7, 10–12, 16, 22, 31, 45, 56, 57, 60–
62, 66, 83, 87, 91, 102, 103, 108, 110, 113, 116, 118, 119, 126,
139, 147, 150, 158, 160, 168, 170, 174, 180, 188, 192].

In addition to the broader implications of Tesseract, this work
has underpinned subsequent publications in leading security con-
ferences and workshops by the authors of the artifact [8, 13–15, 29,
30, 36, 38, 79, 90, 111, 112, 136–138]. A notable example is the paper
on “Dos and Don’ts of Machine Learning in Computer Security” [13],
which won a Distinguished Paper Award at the USENIX Security
Symposium 2022, and originated as a follow-up collaboration from
the Tesseract conference paper [133]. The extended journal ver-
sion of Tesseract [78] is currently under review and brings with it
an updated version of the artifact to ensure its continued relevance.

3.2 Educational Impact

Beyond the impact Tesseract has had on academic research, its in-
fluence extends to machine learning for cybersecurity education at
multiple institutions. In the context of university education, Tesser-
act is taught as a part of classes, as well as presented in talks and
seminars at the following institutions:

• University of Bologna & University of Cagliari: taught in labs
associated with machine learning security [134, 135].

• University College London: taught as a part of the malware
course in the MSc in Information Security [105].

• University of Modena: presented as part of a series of semi-
nars.

• Imperial College London: presented in a keynote at the Ma-
chine Learning and Cyber Security Symposium 2024 [104].

• Karslruhe Institute of Technology (KIT): taught as part of
guest lectures on drift in malware classification in 2021–
2022.

• TU Berlin: presented in the Software Engineering Ph.D. &
PostDoc Winter School.

• KU Leuven: presented in several independent talks and
keynotes at the Security and Privacy in the Age of AI Sum-
mer School in 2022–2024 [95].

Furthermore, Tesseract has been presented in several invited
talks and keynotes, including the Deep Learning and Security work-
shop 2023 (co-located with IEEE S&P 2023), Tsinghua University,
Zhejiang University, BIFOLD TU Berlin, University of Luxembourg,
AI Security SIG Meeting, and the University of British Columbia, to
name a few. Finally, Tesseract is used on track three of the ELSA
EU benchmark competition for cybersecurity [52], showing the
continued value of the evaluation this artifact provides.

3.3 Industrial Impact

The influence Tesseract has had on industry is evident through
the different companies in security and artificial intelligence, as
well as industrial research laboratories that have requested access
to the artifact.

• Security companies: CKIN, a company specializing in
European telecommunication security; IOvation, a provider
of zero-trust enterprise security solutions; and ESTsecurity,
focusing on malware analysis and threat intelligence.
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• AI company: Vicomtech provides artificial intelligence and
visual computing knowledge transfer to industry.

• Industrial research laboratories: Toshiba Research In-
novation Laboratory, Visa Research, Samsung Research,
Capital One, and MITRE.

In addition to the requests for access to the Tesseract artifact, it
has also been presented at the following industry-focused events:

• IBM AI Masterclass in Dublin in 2024
• USENIX ENIGMA 2019
• Avast CyberSec&AI Connected in Prague in 2019.

The diverse array of companies expressing interest in theTesseract
artifact underscores its impact, which extends beyond its initial
application.

4 Conclusion

Tesseract re-established standards for the evaluation of ML-based
classifiers in various cybersecurity domains. The artifact showed
that the tantalizing performances of up to 99% present in prior
papers were often inflated. Therefore, Tesseract re-orientated the
research field toward realistic settings and drift mitigation strate-
gies.

The academic impact of this artifact is demonstrated by its in-
fluence on subsequent research carried out by both the original
authors and the broader academic community. Furthermore, the ar-
tifact functions as an educational resource, ensuring that the biases
present in prior research are not perpetuated in the future.

Our journal extension of the original paper, along with updates
to the artifact, attests to our dedication to the continuation of this
work and to the enduring significance of the artifact.
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A Tesseract Access Requests

The complete alphabetized list of all institutions that requested
access to Tesseract before public release on GitHub is as follows:
ANSSI, Beijing Institute of Technology, Beijing University of Posts
and Telecommunications, Birla Institute of Technology and Science,
Boise State University, Cairo University, California State Univer-
sity Long Beach, Carnegie Mellon University, Central Queensland
University, China University of Geosciences, Columbia University,
Czech Technical University, Deakin University, Donghua Univer-
sity, Eindhoven University of Technology, Federal University of
Paraná (UFPR), Florida International University, French Institute for
Research in Computer Science and Automation, Georgia Institute of
Technology, Guangdong University, Guilin University of Electronic
Science and Technology, Hamad Bin Khalifa University, HeiFei Uni-
versity of Technology, Heidelberg University, Helmholtz Center

for Information Security (CISPA), Huazhong University of Science
and Technology (HUST), IIT Hyderabad, IIT Indore, IIT Kanpur, IIT
Madras, ITWM Fraunhofer, Indraprastha Institute of Information
and Technology Delhi (IIITD), Institute for Infocomm Research,
Institute for Information Industry, Jinan University, King’s College
London, La Trobe University, Leiden University, Maulana Abul
Kalam Azad University of Technology, Monash University, Nanjing
University, National Institute of Technology Rourkela, National
Institute of Technology Tiruchirappalli, National Security Research
Institute Korea, National Taiwan University, National University
Of Sciences and Technology (NUST), National University of De-
fence Technology China, National University of Singapore, New
York University, Nirma University, Northeastern University, North-
western University, Osaka University, Peking University, Princeton
University, Queen’s University Belfast, Rice University, Rochester
Institute of Technology, Royal Holloway, Shanghai Jiaotong Uni-
versity, Singapore Management University, Swinburne University
of Technology, TU Berlin, TU Braunschweig, TU Darmstadt, TU
Dublin, TU Munich, Tezpur University, The Alan Turing Institute,
The Hong Kong Polytechnic University, The Interdisciplinary Cen-
ter Herzliya (IDC), Tsinghua University, Ulsan National Institute of
Science & Technology Korea (UNIST), UniBw, Universidad Carlos
III de Madrid, University College London, University of Adelaide,
University of Bari, University of Birmingham, University of Bristol,
University of British Columbia, University of Cagliari, University of
Chinese Academy of Sciences, University of Florida, University of
Hertfordshire, University of Kerala, University of Luxembourg, Uni-
versity of Maryland College Park, University of Milan, University
of Neuchâtel, University of New South Wales, University of Notre
Dame, University of Quebec, University of Rennes, University of
Salerno, University of Science and Technology of China, Univer-
sity of Southampton, University of Toronto, University of Trento,
University of West England Bristol, University of York, University
of the Basque Country, VIT Bhopal, Washington State University,
Wrocław University of Science and Technology, Xidian University,
Yonsei University, Zhejiang University.
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